If n is a prime number greater than 3, what is the remainder : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack

 It is currently 24 Feb 2017, 01:30

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If n is a prime number greater than 3, what is the remainder

Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 37105
Followers: 7251

Kudos [?]: 96473 [4] , given: 10751

If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

26 Aug 2012, 01:56
4
KUDOS
Expert's post
8
This post was
BOOKMARKED
00:00

Difficulty:

5% (low)

Question Stats:

94% (01:27) correct 6% (00:45) wrong based on 1416 sessions

### HideShow timer Statistics

If n is a prime number greater than 3, what is the remainder when n^2 is divided by 12 ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

Practice Questions
Question: 26
Page: 155
Difficulty: 600
[Reveal] Spoiler: OA

_________________
Intern
Joined: 16 May 2013
Posts: 30
Followers: 0

Kudos [?]: 31 [8] , given: 13

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

27 Jun 2013, 09:00
8
KUDOS
5
This post was
BOOKMARKED
Bunuel wrote:
If n is a prime number greater than 3, what is the remainder when n^2 is divided by 12 ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

Practice Questions
Question: 26
Page: 155
Difficulty: 600

All Prime numbers greater than 3 and upto 1000000000000000 can be expressed in the form of 6k+1 or 6k-1 , where k is a not negative integer.

Say N = 6k+1
N^2 = (6k+1)^2 = 36K^2 + 12K + 1 = 12(3K^2 + K) +1

Since 12(3K^2+K) is exactly divisible by 12 , therefore N^2 when divided by 12 leaves a remainder as 1.

Same can be proved for N = 6K -1
Math Expert
Joined: 02 Sep 2009
Posts: 37105
Followers: 7251

Kudos [?]: 96473 [5] , given: 10751

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

26 Aug 2012, 01:56
5
KUDOS
Expert's post
1
This post was
BOOKMARKED
SOLUTION:

If n is a prime number greater than 3, what is the remainder when n^2 is divided by 12 ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

There are several algebraic ways to solve this question, but the easiest way is as follows: since we cannot have two correct answers just pick a prime greater than 3, square it and see what would be the remainder upon division of it by 12.

n=5 --> n^2=25 --> remainder upon division 25 by 12 is 1.

_________________
Math Expert
Joined: 02 Sep 2009
Posts: 37105
Followers: 7251

Kudos [?]: 96473 [2] , given: 10751

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

02 Jul 2013, 09:51
2
KUDOS
Expert's post
mau5 wrote:
pavan2185 wrote:
All the prime numbers >2 end with 1,3,5,7.

No prime no can ever end in 5, except 5.

Since the question stem says Primes >3, we need not check those ending with 1 & 3.

11,13 are primes, which are greater than 3 and end with 1 and 3 respectively.

Moreover,the question asks for the remainder when $$n^2$$ is divided by 12, not n.

We can simply check for the first prime which is greater than 3, so for 5: n=5 --> n^2=25 --> remainder upon division 25 by 12 is 1.

Also, primes greater than 5 can have the units digit of 1, 3, 7, OR 9.
_________________
Verbal Forum Moderator
Joined: 10 Oct 2012
Posts: 630
Followers: 82

Kudos [?]: 1136 [1] , given: 136

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

02 Jul 2013, 09:41
1
KUDOS
pavan2185 wrote:
All the prime numbers >2 end with 1,3,5,7.

No prime no can ever end in 5, except 5.

Since the question stem says Primes >3, we need not check those ending with 1 & 3.

11,13 are primes, which are greater than 3 and end with 1 and 3 respectively.

Moreover,the question asks for the remainder when $$n^2$$ is divided by 12, not n.
_________________
Intern
Joined: 21 Apr 2010
Posts: 12
Followers: 1

Kudos [?]: 1 [0], given: 2

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

27 Aug 2012, 10:08
Prime nos. n > 3 are 5,7,11...and their squares n^2 are 25, 49, 121...
Remainder of (n^2)/12 is 1.
Director
Status: Final Countdown
Joined: 17 Mar 2010
Posts: 563
Location: India
GPA: 3.82
WE: Account Management (Retail Banking)
Followers: 17

Kudos [?]: 283 [0], given: 75

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

27 Aug 2012, 10:45
Prime numbers greater than 3 are 5,7,.....17 etc

Remainders , when divided by 12;
(5)^2/12--> 1
(7)^2/12-->1
.
.
.
(17)^2/12-->1

_________________

" Make more efforts "
Press Kudos if you liked my post

Math Expert
Joined: 02 Sep 2009
Posts: 37105
Followers: 7251

Kudos [?]: 96473 [0], given: 10751

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

31 Aug 2012, 00:47
SOLUTION:

If n is a prime number greater than 3, what is the remainder when n^2 is divided by 12 ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

There are several algebraic ways to solve this question, but the easiest way is as follows: since we cannot have two correct answers just pick a prime greater than 3, square it and see what would be the remainder upon division of it by 12.

n=5 --> n^2=25 --> remainder upon division 25 by 12 is 1.

_________________
VP
Joined: 08 Jun 2010
Posts: 1422
Followers: 3

Kudos [?]: 119 [0], given: 825

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

27 Feb 2013, 23:23
dont use algebric, pick numbers.

I want to follow this posting
_________________

visit my facebook to help me.

Manager
Joined: 07 Feb 2011
Posts: 98
Followers: 0

Kudos [?]: 59 [0], given: 45

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

03 Mar 2013, 05:43
Bah read the question stem carefully. Was doing a cube problem before this and did it with n^3.
_________________

Director
Joined: 14 Dec 2012
Posts: 842
Location: India
Concentration: General Management, Operations
GMAT 1: 700 Q50 V34
GPA: 3.6
Followers: 60

Kudos [?]: 1310 [0], given: 197

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

22 Apr 2013, 22:25
Bunuel wrote:
SOLUTION:

If n is a prime number greater than 3, what is the remainder when n^2 is divided by 12 ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

There are several algebraic ways to solve this question, but the easiest way is as follows: since we cannot have two correct answers just pick a prime greater than 3, square it and see what would be the remainder upon division of it by 12.

n=5 --> n^2=25 --> remainder upon division 25 by 12 is 1.

hi bunuel,

for the above question if N^2 is divided by 3 or 6 or 8 or 24 then also remainder is always 1.

my question is whether these are the only numbers which when divide N^2 gives the constant remainder or there are other numbers also
which when divide a prime^2 (greater than 3) gives a constant remainder.

i know i am out of topic but if possible do reply because knowing these stuff might save some time in exams.

regards
SKM
_________________

When you want to succeed as bad as you want to breathe ...then you will be successfull....

GIVE VALUE TO OFFICIAL QUESTIONS...

learn AWA writing techniques while watching video : http://www.gmatprepnow.com/module/gmat-analytical-writing-assessment

Manager
Joined: 15 Apr 2013
Posts: 86
Location: India
Concentration: Finance, General Management
Schools: ISB '15
WE: Account Management (Other)
Followers: 1

Kudos [?]: 95 [0], given: 61

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

02 Jul 2013, 09:16
All the prime numbers >2 end with 1,3,5,7. Since the question stem says Primes >3, we need not check those ending with 1 & 3. so pick any numbers ending with 5&7 , you will get the same remainder.
Manager
Joined: 15 Apr 2013
Posts: 86
Location: India
Concentration: Finance, General Management
Schools: ISB '15
WE: Account Management (Other)
Followers: 1

Kudos [?]: 95 [0], given: 61

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

02 Jul 2013, 10:09
Bunuel wrote:

We can simply check for the first prime which is greater than 3, so for 5: n=5 --> n^2=25 --> remainder upon division 25 by 12 is 1.

Also, primes greater than 5 can have the units digit of 1, 3, 7, OR 9.

mau5 wrote:
pavan2185 wrote:
All the prime numbers >2 end with 1,3,5,7.

No prime no can ever end in 5, except 5.

Since the question stem says Primes >3, we need not check those ending with 1 & 3.

11,13 are primes, which are greater than 3 and end with 1 and 3 respectively.

Moreover,the question asks for the remainder when $$n^2$$ is divided by 12, not n.

Sorry for that "5" Thing and I could not exactly write what I was thinking on my mind to solve this question. ( looks like I should sleep now )
Manager
Joined: 11 Sep 2012
Posts: 91
GMAT 1: Q V
GMAT 2: Q V0
Followers: 0

Kudos [?]: 21 [0], given: 9

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

25 Dec 2013, 10:39
koolgmat wrote:
Bunuel wrote:
If n is a prime number greater than 3, what is the remainder when n^2 is divided by 12 ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

Practice Questions
Question: 26
Page: 155
Difficulty: 600

All Prime numbers greater than 3 and upto 1000000000000000 can be expressed in the form of 6k+1 or 6k-1 , where k is a not negative integer.

Say N = 6k+1
N^2 = (6k+1)^2 = 36K^2 + 12K + 1 = 12(3K^2 + K) +1

Since 12(3K^2+K) is exactly divisible by 12 , therefore N^2 when divided by 12 leaves a remainder as 1.

Same can be proved for N = 6K -1

How do we know that the prime number in questions is not larger than 10^15?

So that we know how to, how do we solve this problem algebraically?
Math Expert
Joined: 02 Sep 2009
Posts: 37105
Followers: 7251

Kudos [?]: 96473 [0], given: 10751

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

26 Dec 2013, 02:39
Expert's post
2
This post was
BOOKMARKED
bschoolaspirant9 wrote:
koolgmat wrote:
Bunuel wrote:
If n is a prime number greater than 3, what is the remainder when n^2 is divided by 12 ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

Practice Questions
Question: 26
Page: 155
Difficulty: 600

All Prime numbers greater than 3 and upto 1000000000000000 can be expressed in the form of 6k+1 or 6k-1 , where k is a not negative integer.

Say N = 6k+1
N^2 = (6k+1)^2 = 36K^2 + 12K + 1 = 12(3K^2 + K) +1

Since 12(3K^2+K) is exactly divisible by 12 , therefore N^2 when divided by 12 leaves a remainder as 1.

Same can be proved for N = 6K -1

How do we know that the prime number in questions is not larger than 10^15?

So that we know how to, how do we solve this problem algebraically?

n^2 can be greater than 10^15 and the property would still hold true. koolgmat incorrectly limited the upper limit to 10^15.

The property koolgmat is referring to is: ANY prime number $$p$$ greater than 3 can be expressed as $$p=6n+1$$ or $$p=6n+5$$ ($$p=6n-1$$), where $$n$$ is an integer >1.

That's because any prime number $$p$$ greater than 3 when divided by 6 can only give remainder of 1 or 5 (remainder can not be 2 or 4 as in this case $$p$$ would be even and remainder can not be 3 as in this case $$p$$ would be divisible by 3).

But:
Note that, not all number which yield a remainder of 1 or 5 upon division by 6 are primes, so vise-versa of above property is not correct. For example 25 (for $$n=4$$) yields a remainder of 1 upon division by 6 and it's not a prime number.

Hope it's clear.

P.S. Similar question to practice: if-n-4p-where-p-is-a-prime-number-greater-than-2-how-man-144781.html
_________________
Manager
Joined: 07 Apr 2014
Posts: 147
Followers: 1

Kudos [?]: 23 [0], given: 81

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

10 Sep 2014, 01:30
Bunuel wrote:
If n is a prime number greater than 3, what is the remainder when n^2 is divided by 12 ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

Practice Questions
Question: 26
Page: 155
Difficulty: 600

n is a prime number greater than 3. so it has to be 5, 7, 11....

n^2 /12 =

say 25/12 =1
49/12=1
Intern
Joined: 22 Nov 2012
Posts: 22
Location: United States
Followers: 0

Kudos [?]: 7 [0], given: 90

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

30 Mar 2015, 08:04
Bunuel

Hi,

I came across another way to solve the problem but I need you to validate it. It might lead to the correct answer choice just by fluke!

Here it is:

Any positive integers not multiple of 3, when divided by 3, have a remainder of 1 or 2
Any positive odd integers when divided by 2, have a remainder of 1
So, if n is divided by 2 and 3 the remainder will be 1. ( which the only common option among the remainders of 3 and 2).

Does it make any sense?

Thank you!

Bunuel wrote:
SOLUTION:

If n is a prime number greater than 3, what is the remainder when n^2 is divided by 12 ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

There are several algebraic ways to solve this question, but the easiest way is as follows: since we cannot have two correct answers just pick a prime greater than 3, square it and see what would be the remainder upon division of it by 12.

n=5 --> n^2=25 --> remainder upon division 25 by 12 is 1.

_________________

GMAT,
It is not finished untill I win!!!

Optimus Prep Instructor
Joined: 06 Nov 2014
Posts: 1787
Followers: 54

Kudos [?]: 403 [0], given: 21

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

31 Mar 2015, 11:07
Bunuel wrote:
If n is a prime number greater than 3, what is the remainder when n^2 is divided by 12 ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

Practice Questions
Question: 26
Page: 155
Difficulty: 600

There are infinite prime numbers greater than 3.
So one this is sure that all prime numbers (greater than 3) when squared and then divided by 12 will have the same remainder.
So let us assume that the prime number is 5.
So, 5^2 = 25 when divided by 12 gives 1 as remainder.
Hence option (B).

--
Optimus Prep's GMAT On Demand course for only $299 covers all verbal and quant. concepts in detail. Visit the following link to get your 7 days free trial account: http://www.optimus-prep.com/gmat-on-demand-course _________________ # Janielle Williams Customer Support Special Offer:$80-100/hr. Online Private Tutoring
GMAT On Demand Course \$299
Free Online Trial Hour

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13944
Followers: 590

Kudos [?]: 167 [0], given: 0

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

18 May 2016, 07:01
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Director
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 585
Followers: 24

Kudos [?]: 254 [0], given: 2

Re: If n is a prime number greater than 3, what is the remainder [#permalink]

### Show Tags

18 May 2016, 11:06
Bunuel wrote:
If n is a prime number greater than 3, what is the remainder when n^2 is divided by 12 ?

(A) 0
(B) 1
(C) 2
(D) 3
(E) 5

Solution:

We see that n can be ANY PRIME NUMBER GREATER THAN 3. Let’s choose the smallest prime number greater than 3 and substitute it for n; that number is 5.

We know that 5 squared is 25, so we now divide 25 by 12:

25/12 = 2, Remainder 1.

If you are not convinced by trying just one prime number, try another one. Let’s try 7. We know that 7 squared equals 49, so we now divide 49 by 12:

49/12 = 4, Remainder 1.

It turns out that in this problem it doesn’t matter which prime number (greater than 3) we choose. The remainder will always be 1 when its square is divided by 12.

_________________

Jeffrey Miller
Jeffrey Miller

Re: If n is a prime number greater than 3, what is the remainder   [#permalink] 18 May 2016, 11:06

Go to page    1   2    Next  [ 22 posts ]

Similar topics Replies Last post
Similar
Topics:
4 If P is a prime number greater than 5, what is the remainder when P^2 5 03 Aug 2016, 03:19
1 If P is a prime number greater than 3, find the remainder when p^2 + 1 2 10 Jun 2016, 19:44
9 If n=3*4*p where p is a prime number greater than 3,how many different 7 08 Jun 2016, 22:58
16 The sum of prime numbers that are greater than 60 but less 9 23 Jul 2012, 03:39
13 If n is a prime number greater than 3, what is the remainder 23 28 Oct 2011, 04:13
Display posts from previous: Sort by