Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Now, obviously \(3*(\frac{1}{33})<\frac{1}{31}+\frac{1}{32}+\frac{1}{33}<3*(\frac{1}{31})\), as {3 times the least #} < {given sum} < {3 times the largest #}:

1/a > 3/33 ( i.e 1/11) ... Hence a<11 from eq 1 --- n+1 >a>11 ................ n<a<11.. hence n <11

1/a < 3/31 ( or 1/10)..... hence a>10 from eq 1 --- n+1>a>10 .... hence n+1>10 ... n> 9

Ans n=10

hi gmacforjyoab,

I guess i am lacking some mathematics in the highlighted part. Could you please throw some light. It would be great help.

Regards Atal Pandit

Since (1/n+1) < 1/a < 1/n , we can say that n+1 >a > n ( when u take the reciprocal of two numbers in an Inequality , the inequality flips ) Consider this ---- 1/4<1/3<1/2 , which would mean 4>3>2 ...

Oh and lets say - all the numbers were 1/33 , then the sum would be 3/33 , but all the numbers are not 1/33 , the other two numbers are 1/32 and 1/31 . and these two numbers are greater than 1/33 , hence the sum of 1/31 +1/32 + 1/33 would also be grater than 3/33 hence , 1/a > 3/33 i.e 1/11

Now, obviously \(3*(\frac{1}{33})<\frac{1}{31}+\frac{1}{32}+\frac{1}{33}<3*(\frac{1}{31})\), as {3 times the least #}<{given sum}<{3 times the largest #} --> \(\frac{3}{33}<\frac{1}{31}+\frac{1}{32}+\frac{1}{33}<\frac{3}{31}\) --> \(\frac{1}{11}<\frac{1}{31}+\frac{1}{32}+\frac{1}{33}<\frac{3}{31}<\frac{3}{30}\) --> \(\frac{1}{10+1}<\frac{1}{31}+\frac{1}{32}+\frac{1}{33}<\frac{3}{31}<\frac{1}{10}\) --> \(n=10\).

Answer: B.

...............

Amazing solution..... glad to learn this.....
_________________

Re: If n is an integer and 1/(n+1)<1/31+1/32+1/33<1/n, then what [#permalink]

Show Tags

07 Oct 2016, 07:20

solved it the other way...and probably the fastest way... suppose we have 1/33 + 1/33 + 1/33 we have 3/33 or 1/11 since we have 1/31 and 1/32, logically, the result would be slightly more than 1/11. 10 works just fine... we have 1/n+1 => 1/11, and we have 1/10