Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack

 It is currently 29 May 2017, 02:17

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If n is positive, which of the following is equal to

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Manager
Joined: 23 Jan 2006
Posts: 192
Followers: 1

Kudos [?]: 30 [0], given: 0

If n is positive, which of the following is equal to [#permalink]

### Show Tags

28 Jun 2006, 06:36
8
This post was
BOOKMARKED
00:00

Difficulty:

25% (medium)

Question Stats:

71% (01:44) correct 29% (01:17) wrong based on 658 sessions

### HideShow timer Statistics

If n is positive, which of the following is equal to $$\frac{1}{\sqrt{n+1}-\sqrt{n}}$$

A. 1

B. $$\sqrt{2n+1}$$

C. $$\frac{\sqrt{n+1}}{\sqrt{n}}$$

D. $$\sqrt{n+1}-\sqrt{n}$$

E. $$\sqrt{n+1}+\sqrt{n}$$
[Reveal] Spoiler: OA

Last edited by Bunuel on 16 Apr 2012, 02:05, edited 1 time in total.
Edited the question and added the OA
VP
Joined: 25 Nov 2004
Posts: 1486
Followers: 7

Kudos [?]: 104 [0], given: 0

### Show Tags

28 Jun 2006, 07:33
kook44 wrote:
If n is positive, which of the following is equal to 1/(sqrt(n+1) - sqrt(n))

A. 1
B. sqrt(2n+1)
C. sqrt(n+1) / sqrt(n)
D. sqrt(n+1) - sqrt(n)
E. sqrt(n+1) + sqrt(n)

= 1 / (sqrt(n+1) - sqrt(n))
multiply the expression by [sqrt(n+1) + sqrt(n)] / [sqrt(n+1) + sqrt(n)]
= [sqrt(n+1) + sqrt(n)] / [{sqrt(n+1)}^2 - {sqrt(n)}^2]
= [sqrt(n+1) + sqrt(n)] / [n + 1 - n]
= sqrt (n+1) + sqrt(n)

so E.
Manager
Joined: 30 May 2008
Posts: 75
Followers: 1

Kudos [?]: 114 [0], given: 26

### Show Tags

15 Apr 2012, 21:04
gmatmba wrote:
kook44 wrote:
If n is positive, which of the following is equal to 1/(sqrt(n+1) - sqrt(n))

A. 1
B. sqrt(2n+1)
C. sqrt(n+1) / sqrt(n)
D. sqrt(n+1) - sqrt(n)
E. sqrt(n+1) + sqrt(n)

1/(a-b) = (a+b)/(a^2 - b^2) = (a+b)/1 = E

Can someone please explain how it went from (a^2 - b^2) to just 1 in the denominator?? Thanks!!
Math Expert
Joined: 02 Sep 2009
Posts: 39044
Followers: 7752

Kudos [?]: 106505 [4] , given: 11627

### Show Tags

16 Apr 2012, 02:19
4
KUDOS
Expert's post
1
This post was
BOOKMARKED
catty2004 wrote:
gmatmba wrote:
kook44 wrote:
If n is positive, which of the following is equal to 1/(sqrt(n+1) - sqrt(n))

A. 1
B. sqrt(2n+1)
C. sqrt(n+1) / sqrt(n)
D. sqrt(n+1) - sqrt(n)
E. sqrt(n+1) + sqrt(n)

1/(a-b) = (a+b)/(a^2 - b^2) = (a+b)/1 = E

Can someone please explain how it went from (a^2 - b^2) to just 1 in the denominator?? Thanks!!

If n is positive, which of the following is equal to $$\frac{1}{\sqrt{n+1}-\sqrt{n}}$$

A. 1

B. $$\sqrt{2n+1}$$

C. $$\frac{\sqrt{n+1}}{\sqrt{n}}$$

D. $$\sqrt{n+1}-\sqrt{n}$$

E. $$\sqrt{n+1}+\sqrt{n}$$

This question is dealing with rationalisation of a fraction. Rationalisation is performed to eliminate irrational expression in the denominator. For this particular case we can do this by applying the following rule: $$(a-b)(a+b)=a^2-b^2$$.

Multiple both numerator and denominator by $$\sqrt{n+1}+\sqrt{n}$$: $$\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1})^2-(\sqrt{n})^2)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}=\sqrt{n+1}+\sqrt{n}$$.

_________________
Intern
Joined: 06 Apr 2012
Posts: 34
Followers: 0

Kudos [?]: 27 [0], given: 48

### Show Tags

17 Nov 2012, 05:42
1
This post was
BOOKMARKED
Quote:
If n is positive, which of the following is equal to $$\frac{1}{\sqrt{n+1}-\sqrt{n}}$$

A. 1

B. $$\sqrt{2n+1}$$

C. $$\frac{\sqrt{n+1}}{\sqrt{n}}$$

D. $$\sqrt{n+1}-\sqrt{n}$$

E. $$\sqrt{n+1}+\sqrt{n}$$

This question is dealing with rationalisation of a fraction. Rationalisation is performed to eliminate irrational expression in the denominator. For this particular case we can do this by applying the following rule: $$(a-b)(a+b)=a^2-b^2$$.

Multiple both numerator and denominator by $$\sqrt{n+1}+\sqrt{n}$$: $$\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1})^2-(\sqrt{n})^2)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}=\sqrt{n+1}+\sqrt{n}$$.

Bunuel - just wanted to clarify an aspect of the roots - the final answer of this problem is E and it is perfectly understood. However, if I want to simplify the $$\sqrt{n+1} + \sqrt{n}$$ even more... theoretically I could "unroot" these expressions, so that I get $$2n+1$$, however, as the answer B is clearly wrong (and I can see why), I want to but I struggle to understand how to "put the roots back" in the $$2n+1$$ to get an equivalent of $$\sqrt{n+1} + \sqrt{n}$$. Any thoughts on this matter?

Thanks!

Last edited by kalita on 18 Nov 2012, 03:47, edited 2 times in total.
Math Expert
Joined: 02 Sep 2009
Posts: 39044
Followers: 7752

Kudos [?]: 106505 [1] , given: 11627

### Show Tags

17 Nov 2012, 05:51
1
KUDOS
Expert's post
ikokurin wrote:
Bu nuel wrote:
If n is positive, which of the following is equal to $$\frac{1}{\sqrt{n+1}-\sqrt{n}}$$

A. 1

B. $$\sqrt{2n+1}$$

C. $$\frac{\sqrt{n+1}}{\sqrt{n}}$$

D. $$\sqrt{n+1}-\sqrt{n}$$

E. $$\sqrt{n+1}+\sqrt{n}$$

This question is dealing with rationalisation of a fraction. Rationalisation is performed to eliminate irrational expression in the denominator. For this particular case we can do this by applying the following rule: $$(a-b)(a+b)=a^2-b^2$$.

Multiple both numerator and denominator by $$\sqrt{n+1}+\sqrt{n}$$: $$\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}=\frac{\sqrt{n+1}+\sqrt{n}}{(\sqrt{n+1})^2-(\sqrt{n})^2)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}=\sqrt{n+1}+\sqrt{n}$$.

Bunuel - just wanted to clarify an aspect of the roots - the final answer of this problem is E and it is perfectly understood. However, if I want to simplify the SQRT(n+1) + SQRT(n) even more... theoretically I could "unsquare" these expressions, so that I get 2n+1, however, as the answer B is clearly wrong (and I can see why), I struggle to understand how to "square back" the 2n+1 to get an equivalent of SQRT(n+1) + SQRT(n). Can you help me out or share your thoughts on the matter? Thanks!

I don't understand what you mean: how can you get $$2n+1$$ from $$\sqrt{n+1}+\sqrt{n}$$?
_________________
Intern
Joined: 06 Apr 2012
Posts: 34
Followers: 0

Kudos [?]: 27 [0], given: 48

### Show Tags

17 Nov 2012, 06:06
Quote:
I don't understand what you mean: how can you get $$2n+1$$ from $$\sqrt{n+1}+\sqrt{n}$$?

I meant some people might get $$\sqrt{2n+1}$$ which is the answer B. However, I can see why $$\sqrt{n+1}+\sqrt{n}$$ is NOT equal $$\sqrt{2n+1}$$ even though it might be tempting to simplify it to this form (and pick the wrong answer). But my question is can we simplify $$\sqrt{n+1}+\sqrt{n}$$ further by "squaring" both terms and then "unsquaring" them/the expression back somehow... or what could be an equivalent of $$\sqrt{n+1}+\sqrt{n}$$?

Last edited by kalita on 18 Nov 2012, 03:39, edited 1 time in total.
Math Expert
Joined: 02 Sep 2009
Posts: 39044
Followers: 7752

Kudos [?]: 106505 [2] , given: 11627

### Show Tags

17 Nov 2012, 06:19
2
KUDOS
Expert's post
ikokurin wrote:
I meant some people might get SQRT(2n+1) which is the answer B. However, I can see why SQRT(n+1) + SQRT(n) is NOT equal SQRT(2n+1) even though it might be tempting to simplify it to this form (and pick the wrong answer). But my question is can we simplify SQRT(n+1) + SQRT(n) further by "squaring" both terms and then "squarerooting" them again somehow... or what could be an equivalent of SQRT(n+1) + SQRT(n)?

$$\sqrt{n+1}+\sqrt{n}$$ is the simplest form. If you square it you'll get $$(\sqrt{n+1}+\sqrt{n})^2=(\sqrt{n+1})^2+2\sqrt{n+1}*\sqrt{n}+\sqrt{n}^2=2n+1+2\sqrt{(n+1)n}$$. You cannot take square root from this expression to get anything better than $$\sqrt{n+1}+\sqrt{n}$$.

Hope it's clear.
_________________
Intern
Joined: 06 Apr 2012
Posts: 34
Followers: 0

Kudos [?]: 27 [0], given: 48

### Show Tags

17 Nov 2012, 06:37
Quote:
$$\sqrt{n+1}+\sqrt{n}$$ is the simplest form. If you square it you'll get $$(\sqrt{n+1}+\sqrt{n})^2=(\sqrt{n+1})^2+2\sqrt{n+1}*\sqrt{n}+\sqrt{n}^2=2n+1+2\sqrt{(n+1)n}$$. You cannot take square root from this expression to get anything better than $$\sqrt{n+1}+\sqrt{n}$$.

Hope it's clear.

I see. What you are saying is clear but your answer does not exactly address what I am after. I can see that $$(\sqrt{n+1}+\sqrt{n})^2$$ only complicates it further. Sorry to be pertinacious on this - if we do $$(\sqrt{n+1})^2+(\sqrt{n})^2$$ => we will get $$n+1 + n = 2n + 1$$ => can we "undo" the expression $$2n + 1$$ somehow to get the equivalent of $$\sqrt{n+1}+\sqrt{n}$$? I promise this is the last one:)

P.S. Also, please let me know if it would be better to send a PM on related "clarifying" questions...

Last edited by kalita on 18 Nov 2012, 03:32, edited 1 time in total.
Math Expert
Joined: 02 Sep 2009
Posts: 39044
Followers: 7752

Kudos [?]: 106505 [0], given: 11627

### Show Tags

17 Nov 2012, 06:45
ikokurin wrote:
$$\sqrt{n+1}+\sqrt{n}$$ is the simplest form. If you square it you'll get $$(\sqrt{n+1}+\sqrt{n})^2=(\sqrt{n+1})^2+2\sqrt{n+1}*\sqrt{n}+\sqrt{n}^2=2n+1+2\sqrt{(n+1)n}$$. You cannot take square root from this expression to get anything better than $$\sqrt{n+1}+\sqrt{n}$$.

Hope it's clear.

I see. What you are saying is clear but your answer does not exactly address what I am after. Sorry to be pertinacious on this but I was wondering if we can do (SQRT(n+1))^2 + (SQRT(n))^2 => we will get n+1 + n = 2n + 1 => can we "undo" the expression 2n + 1 somehow to get the equivalent of SQRT(n+1) + SQRT(n)? I promise this is the last one:) Also, please let me know if it would be better to send a PM on related "clarifying" questions...[/quote]

The answer is no, these expressions are not equal.

_________________
Intern
Joined: 06 Apr 2012
Posts: 34
Followers: 0

Kudos [?]: 27 [0], given: 48

### Show Tags

17 Nov 2012, 18:44
Quote:
The answer is no, these expressions are not equal.

I understand they are not equal, thanks for help. So I take away there is no way to go from $$2n+1$$ (obtained after squaring both terms ($$(\sqrt{n+1})^2 + (\sqrt{n})^2$$) into something else that could be an equivalent of$$\sqrt{n+1} + \sqrt{n}$$. As mentioned above, for those having issues with exponents/roots, it is possible to make a mistake of simplifying $$(\sqrt{n+1})^2 + (\sqrt{n})^2$$ into $$\sqrt{2n+1}$$ (which is incorrect); nevertheless I wanted to see if there was a way to do something about $$2n+1$$ to make it equal to $$\sqrt{n+1} + \sqrt{n}$$. For some reason, having inner desire to combine those $$n$$ terms to make it all look nicer, it bugs me that leaving the answer as $$\sqrt{n+1} + \sqrt{n}$$ is all we can do about this equation; especially after I saw some tricks/solutions relating to the tricky exponent problems and how one can do "wonders" with squaring and unsquaring things I was thinking about simplifying this thing into something like, obviously grossly exaggerated, $$^4\sqrt{2n+1}$$ or $$\sqrt{2n}+\sqrt{1}$$, etc., by "squarerooting" $$2n+1$$ back somehow. But again I know the previous examples are plain wrong, just giving an example of what one can go through working through possibilities. Anyhow, enough of this rumble, let me know if you have anything to add...and thanks much for patience.

Regards,
Senior Manager
Joined: 13 Aug 2012
Posts: 464
Concentration: Marketing, Finance
GPA: 3.23
Followers: 26

Kudos [?]: 468 [0], given: 11

Re: If n is positive, which of the following is equal to [#permalink]

### Show Tags

11 Dec 2012, 04:33
$$\frac{1}{\sqrt{n+1}-\sqrt{n}}$$

$$\frac{1}{\sqrt{n+1}-\sqrt{n}} * \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$$

$$\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}$$

$$\frac{\sqrt{n+1}+\sqrt{n}}{1}$$

_________________

Impossible is nothing to God.

Intern
Joined: 03 Jan 2013
Posts: 15
Followers: 1

Kudos [?]: 0 [0], given: 50

Re: If n is positive, which of the following is equal to [#permalink]

### Show Tags

23 Jan 2013, 08:27
I have a quick question on this ..when the initial fraction was rationalized you used:

$$\sqrt{n+1}+ \sqrt{n} / \sqrt{n+1}+ \sqrt{n}$$

did you change the sign from negative to positive since the question stated "n" is a positive number. Wouldn't you have to use the same denominator when Rationalizing a fraction?
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7380
Location: Pune, India
Followers: 2292

Kudos [?]: 15151 [4] , given: 224

Re: If n is positive, which of the following is equal to [#permalink]

### Show Tags

23 Jan 2013, 20:23
4
KUDOS
Expert's post
1
This post was
BOOKMARKED
pharm wrote:
I have a quick question on this ..when the initial fraction was rationalized you used:

$$\sqrt{n+1}+ \sqrt{n} / \sqrt{n+1}+ \sqrt{n}$$

did you change the sign from negative to positive since the question stated "n" is a positive number. Wouldn't you have to use the same denominator when Rationalizing a fraction?

When there is an irrational number in the denominator, you rationalize it by multiplying it with its complement i.e. if it is $$\sqrt{a} + \sqrt{b}$$ in the denominator, you will multiply by $$\sqrt{a} - \sqrt{b}$$. This is done to use the algebraic identity (a + b)(a - b) = a^2 - b^2. When a and b are irrational, a^2 and b^2 become rational (given we are dealing with only square roots)

To keep the fraction same, you need to multiply the numerator with the same number as well.

An example will make it clear:

Rationalize

$$\frac{3}{{\sqrt{2} - 1}}$$

= $$\frac{3}{{\sqrt{2} - 1}} * \frac{\sqrt{2} + 1}{\sqrt{2} + 1}$$

= $$\frac{3*(\sqrt{2} + 1)}{(\sqrt{2})^2 - 1^2}$$

= $$\frac{3*(\sqrt{2} + 1)}{2 - 1}$$

The denominator has become rational.

Similarly, if the denominator has $$\sqrt{a} - \sqrt{b}$$, you will multiply by $$\sqrt{a} + \sqrt{b}$$.

In this question too, you can substitute n = 1. The given expression becomes $$\frac{1}{{\sqrt{2} - 1}}$$
Rationalize it and you will get $$\sqrt{2} + 1$$. Put n = 1 in the options. Only option (E) gives you $$\sqrt{2} + 1$$.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199 Veritas Prep Reviews Intern Joined: 03 Jan 2013 Posts: 15 Followers: 1 Kudos [?]: 0 [0], given: 50 Re: If n is positive, which of the following is equal to [#permalink] ### Show Tags 28 Jan 2013, 08:51 Thanks Karishma that cleared things up Current Student Joined: 06 Sep 2013 Posts: 2004 Concentration: Finance Followers: 68 Kudos [?]: 643 [0], given: 355 Re: If n is positive, which of the following is equal to [#permalink] ### Show Tags 22 Nov 2013, 07:12 kook44 wrote: If n is positive, which of the following is equal to $$\frac{1}{\sqrt{n+1}-\sqrt{n}}$$ A. 1 B. $$\sqrt{2n+1}$$ C. $$\frac{\sqrt{n+1}}{\sqrt{n}}$$ D. $$\sqrt{n+1}-\sqrt{n}$$ E. $$\sqrt{n+1}+\sqrt{n}$$ Isn't it much easier to just pick n=1 and then look for target in answer choices? Cheers! J Manager Joined: 25 Oct 2013 Posts: 169 Followers: 1 Kudos [?]: 59 [0], given: 56 Re: If n is positive, which of the following is equal to [#permalink] ### Show Tags 22 Nov 2013, 08:01 jlgdr wrote: kook44 wrote: If n is positive, which of the following is equal to $$\frac{1}{\sqrt{n+1}-\sqrt{n}}$$ A. 1 B. $$\sqrt{2n+1}$$ C. $$\frac{\sqrt{n+1}}{\sqrt{n}}$$ D. $$\sqrt{n+1}-\sqrt{n}$$ E. $$\sqrt{n+1}+\sqrt{n}$$ Isn't it much easier to just pick n=1 and then look for target in answer choices? Cheers! J What if more than one answer choice gives you same value? first, we have to try original expression with 1 and try each of the choices with 1. If we are lucky we have only one choice matching. but what if there are 2 or even 3 answer choices? we would then have to pick another number. Personally I feel solving it is faster in this case. Sometimes number picking works faster. knowing when to use number picking is the difficult part. _________________ Click on Kudos if you liked the post! Practice makes Perfect. Current Student Joined: 06 Sep 2013 Posts: 2004 Concentration: Finance Followers: 68 Kudos [?]: 643 [0], given: 355 Re: If n is positive, which of the following is equal to [#permalink] ### Show Tags 22 Nov 2013, 08:29 Ya I guess your right after solving the way Bunuel did it took less than 20 secs Posted from my mobile device Veritas Prep GMAT Instructor Joined: 16 Oct 2010 Posts: 7380 Location: Pune, India Followers: 2292 Kudos [?]: 15151 [0], given: 224 Re: If n is positive, which of the following is equal to [#permalink] ### Show Tags 24 Nov 2013, 21:05 Expert's post 1 This post was BOOKMARKED jlgdr wrote: kook44 wrote: If n is positive, which of the following is equal to $$\frac{1}{\sqrt{n+1}-\sqrt{n}}$$ A. 1 B. $$\sqrt{2n+1}$$ C. $$\frac{\sqrt{n+1}}{\sqrt{n}}$$ D. $$\sqrt{n+1}-\sqrt{n}$$ E. $$\sqrt{n+1}+\sqrt{n}$$ Isn't it much easier to just pick n=1 and then look for target in answer choices? Cheers! J Yes, absolutely it is. I would answer this question by plugging in the values but you have to be careful of two things. When pluggin in values in the options, two or more options might seem to satisfy. If this happens, you need to plug in a different number in those two to get the actual correct answer. Also, you need to ensure that the value given by option actually does not match the required value before discarding it. e.g. here if I put n = 1, $$\frac{1}{\sqrt{n+1}-\sqrt{n}}$$ = $$\frac{1}{\sqrt{2}-1}$$ while option (E) gives $$\sqrt{n+1}+\sqrt{n}$$ = $$\sqrt{2}+1$$ You cannot discard option (E) because it doesn't look the same. You must rationalize the value obtained from the expression and then compare it with what you get from option (E). So you must be careful. _________________ Karishma Veritas Prep | GMAT Instructor My Blog Get started with Veritas Prep GMAT On Demand for$199

Veritas Prep Reviews

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 15506
Followers: 651

Kudos [?]: 210 [0], given: 0

Re: If n is positive, which of the following is equal to [#permalink]

### Show Tags

11 Feb 2015, 04:54
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: If n is positive, which of the following is equal to   [#permalink] 11 Feb 2015, 04:54

Go to page    1   2    Next  [ 21 posts ]

Similar topics Replies Last post
Similar
Topics:
2 Which of the following is equal to n!*(n+1)!? 4 25 May 2017, 01:19
1 Which of the following is equal to (n+2)!/n!? 4 24 Apr 2017, 02:50
20 For all positive integers n and m, the function A(n) equals the follow 7 11 Nov 2016, 21:22
If n + xy = n and x is not equal to 0, which of the follow 1 19 Nov 2013, 03:32
6 If n is positive, which of the following is equal to 5 31 Jul 2013, 10:40
Display posts from previous: Sort by

# If n is positive, which of the following is equal to

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.