GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 23 Feb 2019, 09:10

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in February
PrevNext
SuMoTuWeThFrSa
272829303112
3456789
10111213141516
17181920212223
242526272812
Open Detailed Calendar
• ### FREE Quant Workshop by e-GMAT!

February 24, 2019

February 24, 2019

07:00 AM PST

09:00 AM PST

Get personalized insights on how to achieve your Target Quant Score.
• ### Free GMAT RC Webinar

February 23, 2019

February 23, 2019

07:00 AM PST

09:00 AM PST

Learn reading strategies that can help even non-voracious reader to master GMAT RC. Saturday, February 23rd at 7 AM PT

# If positive real numbers a,b,c are in a.p such that abc=4 Then the min

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 53066
If positive real numbers a,b,c are in a.p such that abc=4 Then the min  [#permalink]

### Show Tags

31 Jan 2019, 23:50
00:00

Difficulty:

45% (medium)

Question Stats:

50% (02:20) correct 50% (02:40) wrong based on 17 sessions

### HideShow timer Statistics

If positive numbers a, b, c are in arithmetic progression such that abc = 4, then the minimum value of b is

A. 2^(1/3)
B. 2^(2/3)
C. 2^(1/2)
D. 2^(3/2)
E. 2^(1/4)

If positive real numbers a,b,c are in a.p such that abc=4 Then the minimum value of b is

_________________
Math Expert
Joined: 02 Aug 2009
Posts: 7335
Re: If positive real numbers a,b,c are in a.p such that abc=4 Then the min  [#permalink]

### Show Tags

01 Feb 2019, 09:48
Bunuel wrote:
If positive numbers a, b, c are in arithmetic progression such that abc = 4, then the minimum value of b is

A. 2^(1/3)
B. 2^(2/3)
C. 2^(1/2)
D. 2^(3/2)
E. 2^(1/4)

If positive real numbers a,b,c are in a.p such that abc=4 Then the minimum value of b is

Two ways..

(I) relation in arithmetic mean and geometric mean
AM$$\geq$$GM = $$\frac{a+b+c}{3}\geq{abc}^{1/3}$$.. Now as a,b,c are in arithmetic progression, a+c=2b , so a+b+c=3b..
$$\frac{3b}{3}\geq{4}^{1/3}........b\geq{2}^{2/3}$$.

(II) let a-b=c-b=d..
so three numbers can be written as (b-d), b, (b+d)..
thus abc = (b-d)* b* (b+d)=$$b(b^2-d^2)=2^2....b^3-bd^2=2^2$$, so $$b^3>2^2...b>2^{2/3}$$
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html
4) Base while finding % increase and % decrease : https://gmatclub.com/forum/percentage-increase-decrease-what-should-be-the-denominator-287528.html

GMAT Expert

SVP
Joined: 18 Aug 2017
Posts: 1928
Location: India
Concentration: Sustainability, Marketing
GPA: 4
WE: Marketing (Energy and Utilities)
If positive real numbers a,b,c are in a.p such that abc=4 Then the min  [#permalink]

### Show Tags

01 Feb 2019, 23:27
given
abc are in ap
we can write:
a-b=c-b=d..
so three numbers can be written as (b-d), b, (b+d)
abc = (b-d)*b*(b+d)
2^2=b(b^2-d^2)
2^2= b^3-b*d^2

value of b^3>2^2
or say
b>2^2/3

IMO B
chetan2u wrote:
Bunuel wrote:
If positive numbers a, b, c are in arithmetic progression such that abc = 4, then the minimum value of b is

A. 2^(1/3)
B. 2^(2/3)
C. 2^(1/2)
D. 2^(3/2)
E. 2^(1/4)

If positive real numbers a,b,c are in a.p such that abc=4 Then the minimum value of b is

Two ways..

(I) relation in arithmetic mean and geometric mean
AM$$\geq$$GM = $$\frac{a+b+c}{3}\geq{abc}^{1/3}$$.. Now as a,b,c are in arithmetic progression, a+c=2b , so a+b+c=3b..
$$\frac{3b}{3}\geq{4}^{1/3}........b\geq{2}^{2/3}$$.

(II) let a-b=c-b=d..
so three numbers can be written as (b-d), b, (b+d)..
thus abc = (b-d)* b* (b+d)=$$b(b^2-d^2)=2^2....b^3-bd^2=2^2$$, so $$b^3>2^2...b>2^{2/3}$$

_________________

If you liked my solution then please give Kudos. Kudos encourage active discussions.

If positive real numbers a,b,c are in a.p such that abc=4 Then the min   [#permalink] 01 Feb 2019, 23:27
Display posts from previous: Sort by

# If positive real numbers a,b,c are in a.p such that abc=4 Then the min

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.