If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends : GMAT Problem Solving (PS)
Check GMAT Club Decision Tracker for the Latest School Decision Releases https://gmatclub.com/AppTrack

 It is currently 23 Feb 2017, 12:11

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends

Author Message
TAGS:

### Hide Tags

Manager
Joined: 16 Apr 2010
Posts: 221
Followers: 4

Kudos [?]: 121 [0], given: 12

If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends [#permalink]

### Show Tags

06 Aug 2010, 00:38
13
This post was
BOOKMARKED
00:00

Difficulty:

25% (medium)

Question Stats:

73% (01:42) correct 27% (01:11) wrong based on 367 sessions

### HideShow timer Statistics

If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends to an infinite number of roots and converges to a positive number x, what is x?

A. Sqrt(3)
B. 2
C. 1+sqrt(2)
D. 1+sqrt(3)
E. 2*sqrt(3)
[Reveal] Spoiler: OA
GMAT Tutor
Joined: 24 Jun 2008
Posts: 1183
Followers: 423

Kudos [?]: 1530 [4] , given: 4

Re: Interesting Square Root Problem [#permalink]

### Show Tags

06 Aug 2010, 00:51
4
KUDOS
Expert's post
jakolik wrote:
If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends to an infinite number of roots and converges to a positive number x, what is x?

A- Sqrt(3)
B- 2
C- 1+sqrt(2)
D- 1+sqrt(3)
E- 2*sqrt(3)

This question is out of scope for the GMAT, but there's an interesting trick to questions like this. We know that:

x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...)

Now, notice that the part I've highlighted in red is actually equal to x itself. So we can replace it with x, to get the much simpler equation:

x = sqrt(2 + x)
x^2 = 2 + x
x^2 - x - 2 = 0
(x - 2)(x + 1) = 0
x = 2 or -1

and since x cannot be negative, x = 2. You won't see anything like this on the GMAT though, so it's for interest only.
_________________

GMAT Tutor in Toronto

If you are looking for online GMAT math tutoring, or if you are interested in buying my advanced Quant books and problem sets, please contact me at ianstewartgmat at gmail.com

Math Expert
Joined: 02 Sep 2009
Posts: 37102
Followers: 7251

Kudos [?]: 96428 [5] , given: 10751

Re: Interesting Square Root Problem [#permalink]

### Show Tags

06 Aug 2010, 00:51
5
KUDOS
Expert's post
7
This post was
BOOKMARKED
jakolik wrote:
If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends to an infinite number of roots and converges to a positive number x, what is x?

A- Sqrt(3)
B- 2
C- 1+sqrt(2)
D- 1+sqrt(3)
E- 2*sqrt(3)

$$x=\sqrt{2+{\sqrt{2+\sqrt{2+\sqrt{2+...}}}}}$$ --> $$x=\sqrt{2+({\sqrt{2+\sqrt{2+\sqrt{2+...})}}}}$$, as the expression under square root extends infinitely then expression in brackets would equal to $$x$$ itself so we can rewrite given expression as $$x=\sqrt{2+x}$$. Square both sides $$x^2=2+x$$ --> $$x=2$$ or $$x=-1$$. As given that $$x>1$$ then only one solution is valid: $$x=2$$.

_________________
Manager
Joined: 20 Jul 2010
Posts: 78
Followers: 5

Kudos [?]: 71 [0], given: 32

Re: Interesting Square Root Problem [#permalink]

### Show Tags

06 Aug 2010, 10:59
Thanks for the explanation. Its helpful
Manager
Joined: 06 Apr 2010
Posts: 58
Followers: 0

Kudos [?]: 29 [0], given: 13

Re: Interesting Square Root Problem [#permalink]

### Show Tags

06 Aug 2010, 21:45
That's a clever solution, putting x into the equation itself. Sort of recursive, and very elegant.
These type of problems give me a hard time.
_________________

If you liked my post, please consider thanking me with Kudos! I really appreciate it!

Intern
Joined: 10 Dec 2011
Posts: 43
Location: India
Concentration: Finance, Economics
GMAT Date: 09-28-2012
WE: Accounting (Manufacturing)
Followers: 0

Kudos [?]: 15 [0], given: 4

Sum of an infinite series [#permalink]

### Show Tags

26 Aug 2012, 11:29
1
This post was
BOOKMARKED
Please let me know if you get the formula.
I have to find the sum of the square root of 2 plus Sq root of sq root of 2 plus.... (I have pasted a pic)...
Attachments

File comment: This series goes on forever. I could draw only three twos, but the no is infinite

Sum of infinite root sequence.png [ 7.4 KiB | Viewed 46187 times ]

Intern
Joined: 25 Jun 2012
Posts: 36
Followers: 0

Kudos [?]: 29 [0], given: 4

Re: If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends [#permalink]

### Show Tags

20 Nov 2012, 18:39
It is the √2 plus 2^1/4 + 2^1/8...

all of those tiny little bits of 2, if they extend to infinity, end up to being another 2 under the radical.

√2+2 = 2.
Manager
Status: struggling with GMAT
Joined: 06 Dec 2012
Posts: 225
Concentration: Accounting
GMAT Date: 04-06-2013
GPA: 3.65
Followers: 15

Kudos [?]: 352 [1] , given: 46

### Show Tags

27 Feb 2013, 10:12
1
KUDOS
The expression sqrt{2+{\sqrt{2+\sqrt{2+\sqrt{2+.....extends to an infinite number of roots.Which of the following choices most closely approximates the value of this expression?

(A)\sqrt{3}
(B)2
(C)1+\sqrt{2}
(D)1+\sqrt{3}
(E)2\sqrt{3}

I am finding this math quite difficult for me.plz need details explanation...........
Magoosh GMAT Instructor
Joined: 28 Dec 2011
Posts: 3837
Followers: 1329

Kudos [?]: 6103 [3] , given: 71

### Show Tags

27 Feb 2013, 12:03
3
KUDOS
Expert's post
mun23 wrote:
The expression sqrt{2+{\sqrt{2+\sqrt{2+\sqrt{2+.....extends to an infinite number of roots.Which of the following choices most closely approximates the value of this expression?

(A)\sqrt{3}
(B)2
(C)1+\sqrt{2}
(D)1+\sqrt{3}
(E)2\sqrt{3}

Dear mun23,
The trick of this question is to give the entire expression a name --- I am going to call it S, and then I am going to square it.
Attachment:

nested roots.JPG [ 18.63 KiB | Viewed 45468 times ]

Square the expression produces 2 plus a copy of itself --- that's why we can replace it on the other side with S, and then solve for S algebraically:
S^2 = 2 + S
S^2 - S - 2 = 0
(S - 2)(S + 1) = 1
S = 2 or S = -1
The negative root makes no sense in this context, so S = 2, and the answer = B

Does all this make sense?
Mike
_________________

Mike McGarry
Magoosh Test Prep

Manager
Status: struggling with GMAT
Joined: 06 Dec 2012
Posts: 225
Concentration: Accounting
GMAT Date: 04-06-2013
GPA: 3.65
Followers: 15

Kudos [?]: 352 [0], given: 46

### Show Tags

27 Feb 2013, 12:29
Hi mikemcgarry
I am not understanding why the entire expression is given a named?
Magoosh GMAT Instructor
Joined: 28 Dec 2011
Posts: 3837
Followers: 1329

Kudos [?]: 6103 [1] , given: 71

### Show Tags

27 Feb 2013, 13:38
1
KUDOS
Expert's post
mun23 wrote:
Hi mikemcgarry
I am not understanding why the entire expression is given a named?

Dear mun23,
This is a standard trick in mathematics. We give the entire expression a name, the name S, a variable, because that allows us to manipulate it algebraically. We want to know the value of the entire expression, so we set the entire expression equal to a variable, then ultimately all we have to do is solve for the value of this variable. Because the variable equals the whole expression, when we know the value of the variable, we also know the value of the whole expression.

This is an extension of the fundamental power of algebra --- when we assign a variable to any unknown quantity, then the whole panoply of algebraic techniques comes to bear on the problem.

Keep in mind that material like this ---- infinitely recursive expressions --- is exceedingly unlike to appear on the GMAT. I have never seen anything like this. If it did appear at all, it would only appear to someone getting virtually everything else correct on the Quant section. Folks in the Q < 45 range will NEVER see a question about this stuff, and even folks in the high 50s would only see it less than 1% of the time.

Does all this make sense?

Mike
_________________

Mike McGarry
Magoosh Test Prep

Math Expert
Joined: 02 Sep 2009
Posts: 37102
Followers: 7251

Kudos [?]: 96428 [0], given: 10751

### Show Tags

27 Feb 2013, 14:18
mun23 wrote:
The expression sqrt{2+{\sqrt{2+\sqrt{2+\sqrt{2+.....extends to an infinite number of roots.Which of the following choices most closely approximates the value of this expression?

(A)\sqrt{3}
(B)2
(C)1+\sqrt{2}
(D)1+\sqrt{3}
(E)2\sqrt{3}

I am finding this math quite difficult for me.plz need details explanation...........

Merging similar topics. Please refer to the solutions above.

Similar questions to practice:
tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029228
find-the-value-of-a-given-a-3-3-3-3-3-inf-138049.html
find-the-value-of-x-75403.html

Hope it helps.
_________________
Manager
Joined: 26 Sep 2013
Posts: 221
Concentration: Finance, Economics
GMAT 1: 670 Q39 V41
GMAT 2: 730 Q49 V41
Followers: 4

Kudos [?]: 147 [0], given: 40

Re: Interesting Square Root Problem [#permalink]

### Show Tags

19 Nov 2013, 16:18
Bunuel wrote:
jakolik wrote:
If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends to an infinite number of roots and converges to a positive number x, what is x?

A- Sqrt(3)
B- 2
C- 1+sqrt(2)
D- 1+sqrt(3)
E- 2*sqrt(3)

$$x=\sqrt{2+{\sqrt{2+\sqrt{2+\sqrt{2+...}}}}}$$ --> $$x=\sqrt{2+({\sqrt{2+\sqrt{2+\sqrt{2+...})}}}}$$, as the expression under square root extends infinitely then expression in brackets would equal to $$x$$ itself so we can rewrite given expression as $$x=\sqrt{2+x}$$. Square both sides $$x^2=2+x$$ --> $$x=2$$ or $$x=-1$$. As given that $$x>1$$ then only one solution is valid: $$x=2$$.

Shouldn't the answer to this be infinity....I have been looking at this one for about 45 minutes, and I can't figure it out. We start with 2, and then add to that $$\sqrt{2}$$, which is about 1.4, then we add to that the square root of the square root of 2, or about 1.18, and then add the square root of the square root of the square root of 2, which is 1.09. The numbers CAN NOT ever be below 1. Just taking it out through 10 cycles, the total is almost 11. And this is an infinite sequence, so the answer is whatever the square root of infinity is. I've looked at the solutions above and they don't make sense to me, at all. The way the problem is written, the answer CANT be any of the options listed
Math Expert
Joined: 02 Sep 2009
Posts: 37102
Followers: 7251

Kudos [?]: 96428 [0], given: 10751

Re: Interesting Square Root Problem [#permalink]

### Show Tags

20 Nov 2013, 01:11
AccipiterQ wrote:
Bunuel wrote:
jakolik wrote:
If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends to an infinite number of roots and converges to a positive number x, what is x?

A- Sqrt(3)
B- 2
C- 1+sqrt(2)
D- 1+sqrt(3)
E- 2*sqrt(3)

$$x=\sqrt{2+{\sqrt{2+\sqrt{2+\sqrt{2+...}}}}}$$ --> $$x=\sqrt{2+({\sqrt{2+\sqrt{2+\sqrt{2+...})}}}}$$, as the expression under square root extends infinitely then expression in brackets would equal to $$x$$ itself so we can rewrite given expression as $$x=\sqrt{2+x}$$. Square both sides $$x^2=2+x$$ --> $$x=2$$ or $$x=-1$$. As given that $$x>1$$ then only one solution is valid: $$x=2$$.

Shouldn't the answer to this be infinity....I have been looking at this one for about 45 minutes, and I can't figure it out. We start with 2, and then add to that $$\sqrt{2}$$, which is about 1.4, then we add to that the square root of the square root of 2, or about 1.18, and then add the square root of the square root of the square root of 2, which is 1.09. The numbers CAN NOT ever be below 1. Just taking it out through 10 cycles, the total is almost 11. And this is an infinite sequence, so the answer is whatever the square root of infinity is. I've looked at the solutions above and they don't make sense to me, at all. The way the problem is written, the answer CANT be any of the options listed

Consider the examples below:
$$\sqrt{2}\approx{1.4}$$;

$$\sqrt{2+\sqrt{2}}\approx{1.85}$$;

$$\sqrt{2+{\sqrt{2+\sqrt{2}}}}\approx{1.96}$$;

$$\sqrt{2+{\sqrt{2+\sqrt{2+\sqrt{2}}}}}\approx{1.99}$$;

$$\sqrt{2+{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}\approx{1.998}$$;

$$\sqrt{2+{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}}\approx{1.9994}$$.

...

As you can see the result approaches to 2 by decreasing pace. If we extend that to an infinite number of roots the result will be exactly 2.
_________________
Current Student
Joined: 06 Sep 2013
Posts: 2035
Concentration: Finance
GMAT 1: 770 Q0 V
Followers: 64

Kudos [?]: 604 [0], given: 355

Re: If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends [#permalink]

### Show Tags

04 Dec 2013, 16:41
jakolik wrote:
If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends to an infinite number of roots and converges to a positive number x, what is x?

A. Sqrt(3)
B. 2
C. 1+sqrt(2)
D. 1+sqrt(3)
E. 2*sqrt(3)

Sqrt of 2 is approx 1.4

1.4+2 = 3.4 close enough to 4.
Square root of 4 is 2 and then +2 = square root of 4 again, so this will happen indefinetely
Hence x= Square root of 4 = 2

B

Hope it helps
Cheers
J
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13935
Followers: 589

Kudos [?]: 167 [0], given: 0

Re: If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends [#permalink]

### Show Tags

16 Jan 2015, 05:53
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 13935
Followers: 589

Kudos [?]: 167 [0], given: 0

Re: If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends [#permalink]

### Show Tags

31 Jan 2016, 14:23
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: If the expression x=sqrt(2+sqrt(2+sqrt(2+sqrt(2+...) extends   [#permalink] 31 Jan 2016, 14:23
Similar topics Replies Last post
Similar
Topics:
9 If the expression x^x^x^(...), where the given expression expression 6 20 Jan 2017, 11:51
6 What is the value of the following expression? 3 21 Sep 2014, 03:16
8 The expression above is approximately equal to 8 19 Jan 2014, 22:47
1 Expression!! 1 26 Aug 2011, 21:30
Algebraic Expressions 1 19 Apr 2011, 15:11
Display posts from previous: Sort by