GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 25 Feb 2020, 02:03 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # If x^2 + xy - 32 = 0, and x and y are integers, then y could equal eac

Author Message
TAGS:

### Hide Tags

Math Expert V
Joined: 02 Sep 2009
Posts: 61470
If x^2 + xy - 32 = 0, and x and y are integers, then y could equal eac  [#permalink]

### Show Tags 00:00

Difficulty:   55% (hard)

Question Stats: 61% (02:21) correct 39% (01:57) wrong based on 149 sessions

### HideShow timer Statistics

If x^2 + xy - 32 = 0, and x and y are integers, then y could equal each of the following except?

A) -31
B) -14
C) 2
D) 4
E) 14

_________________
Current Student B
Joined: 08 Nov 2016
Posts: 21
Location: United Arab Emirates
GMAT 1: 610 Q45 V28 GMAT 2: 620 Q44 V32 GMAT 3: 640 Q49 V29 GMAT 4: 700 Q48 V38 GPA: 3.76
Re: If x^2 + xy - 32 = 0, and x and y are integers, then y could equal eac  [#permalink]

### Show Tags

Y must be a number that is produced from adding the factors of -32.

The factors of 32 are the following: (1,-32) (2,-16) (4,-8) (-1,32) (-2,16) (-4,8). Therefore the only possible combination of these factors that doesn't exist when adding them together is 2.

Senior PS Moderator V
Joined: 26 Feb 2016
Posts: 3265
Location: India
GPA: 3.12
If x^2 + xy - 32 = 0, and x and y are integers, then y could equal eac  [#permalink]

### Show Tags

2
2
For the quadratic equation ax^2 + bx + c = 0

The sum of the roots is
$$\frac{-b}{a}$$ and the product of the roots is $$\frac{c}{a}$$

From our question stem, we know that the product is -32 and sum is -y
We can have a product of -32 in any of the ways: -1*32,-2*16,-4*8,4*-8,2*-16 and 1*-32.
The sum could be 31,14,4,-4,-14 and -31. Only Option C(2) is not a valid choice of integer y!
_________________
You've got what it takes, but it will take everything you've got
Intern  B
Joined: 18 May 2017
Posts: 47
Re: If x^2 + xy - 32 = 0, and x and y are integers, then y could equal eac  [#permalink]

### Show Tags

I'm sure that it is not the easiest way but anyway: x^2+xy=32 -----> x(x+y)=32. So we have a multiplication of two integers (as x and y are integers) that yield 32. The factors of 32, that means the numbers that their multiplication by each other can yield 32, are 32, 16, 8, 4, 2, 1. Those numbers and their negative values are the only way to yield 32 by a multiplication of two integers. So in fact there is six options for the multiplication: 32x1; 16x2; 8x4; -32x-1; -16x-2; -8x-4. Now we can plug the values of y and check the answers. If the values of the two number in the multiplication matches to one of the aforementioned cases - y can be the number mentioned in the relevant option.

(A): x(x-31)=32. We can easily see that x can be equal to 32 which is a factor of 32. The multiplication is 32x1.
(B): x(x-14)=32. We can easily see that x can be equal to 16 which is a factor of 32. The multiplication is 16x2.
(C): x(x+2)=32. In this case x cannot equal to any of the factors of 32. We can simply see it by looking at the factors 32 or by using the quadratic equation that will give us an irrational number for x (which is invalid).
(D): x(x+4)=32. We can see that x can be equal to 4 which is a factor of 32. The multiplication is 8x4.
(E): x(x+14)32. We can see that x can be equal to 2 which is a factor of 32 as well. The multiplication is 16x2.

Target Test Prep Representative G
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2801
Re: If x^2 + xy - 32 = 0, and x and y are integers, then y could equal eac  [#permalink]

### Show Tags

Bunuel wrote:
If x^2 + xy - 32 = 0, and x and y are integers, then y could equal each of the following except?

A) -31
B) -14
C) 2
D) 4
E) 14

We can express the equation as follows:

x(x + y) = 32

Since x and y are integers, x and x + y are integer factors of 32. For example, if x = 4, then x + y = 8 which makes y = 4. So choice D is not the answer.

If x = -1, then x + y = -32 which makes y = -31. So choice A is not the answer.

If x = -2, then x + y = -16 which makes y = -14. So choice B is not the answer.

If x = 2, then x + y = 16 which makes y = 14. So choice E is not the answer.

_________________

# Jeffrey Miller

Jeff@TargetTestPrep.com

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button. Re: If x^2 + xy - 32 = 0, and x and y are integers, then y could equal eac   [#permalink] 18 Aug 2018, 19:12
Display posts from previous: Sort by

# If x^2 + xy - 32 = 0, and x and y are integers, then y could equal eac  