It is currently 20 Oct 2017, 09:45

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) >

Author Message
TAGS:

### Hide Tags

Senior Manager
Joined: 28 Aug 2010
Posts: 259

Kudos [?]: 774 [2], given: 11

If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

04 Feb 2011, 17:29
2
KUDOS
16
This post was
BOOKMARKED
00:00

Difficulty:

95% (hard)

Question Stats:

32% (01:35) correct 68% (02:12) wrong based on 551 sessions

### HideShow timer Statistics

If x and y are nonzero integers, is $$(x^{-1}+y^{-1})^{-1}> (x^{-1}*y^{-1})^{-1}$$?

(1) x = 2y

(2) x + y > 0

I need to clarify a doubt in these types of questions. Firstly apologies guys for giving away too much info but it is important to clarify a doubt. If you solve the above equations you'll get 1/x+y > 1 ...so my question is why cant you solve it one step further and say is x+y < 1. Now if i follow the initial approach i get 1/3y > 1 for 1st statement so why cant we say 3y< 1. I got my ans wrong because of this . Please can some clarify if i am doing some thing conceptually wrong.

Apologies again for giving out too much.
[Reveal] Spoiler: OA

_________________

Gmat: everything-you-need-to-prepare-for-the-gmat-revised-77983.html
-------------------------------------------------------------------------------------------------
Ajit

Last edited by Bunuel on 21 Oct 2014, 07:12, edited 4 times in total.
Edited the question.

Kudos [?]: 774 [2], given: 11

Math Expert
Joined: 02 Sep 2009
Posts: 41892

Kudos [?]: 128992 [8], given: 12185

If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

04 Feb 2011, 18:22
8
KUDOS
Expert's post
8
This post was
BOOKMARKED
ajit257 wrote:
If x and y are nonzero integers, is (x-1 + y-1)-1 > [(x-1)(y-1)]-1 ?

(1) x = 2y

(2) x + y > 0

I need to clarify a doubt in these types of questions. Firstly apologies guys for giving away too much info but it is important to clarify a doubt. If you solve the above equations you'll get 1/x+y > 1 ...so my question is why cant you solve it one step further and say is x+y < 1. Now if i follow the initial approach i get 1/3y > 1 for 1st statement so why cant we say 3y< 1. I got my ans wrong because of this . Please can some clarify if i am doing some thing conceptually wrong.

Apologies again for giving out too much.

First of all the question should be:

If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > (x^(-1)*y^(-1))^(-1) ?

Is $$(x^{-1}+y^{-1})^{-1}> (x^{-1}*y^{-1})^{-1}$$? --> is $$(\frac{1}{x}+\frac{1}{y})^{-1}>(\frac{1}{xy})^{-1}$$? --> is $$(\frac{x+y}{xy})^{-1}>xy$$ --> is $$\frac{xy}{x+y}>xy$$?

Now, from this point you cannot divide both parts of the inequality by $$xy$$ and write $$\frac{1}{x+y}>1$$ (as you did), because you don't know whether $$xy$$ is positive or negative: if $$xy>0$$ then you should write $$\frac{1}{x+y}>1$$ BUT if $$xy<0$$ then you should flip the sign and write $$\frac{1}{x+y}<1$$. But even if you knew that $$xy>0$$ then the next step of writing $$x+y<1$$ from $$\frac{1}{x+y}>1$$ would still be incorrect for the same exact reason: you don't k now whether $$x+y$$ is positive or negative, hence you can not muliply both sides of the inequality by $$x+y$$.

Never multiply or divide inequality by a variable (or by an expression with variable) unless you are sure of its sign since you do not know whether you must flip the sign of the inequality.

Thus the question is boiled down to: is $$\frac{xy}{x+y}>xy$$? Actually we can manipulate further but there is no need.

(1) x = 2y --> question becomes: is $$\frac{2y^2}{3y}>2y^2$$? Now, as we know that $$y$$ is nonzero then $$2y^2>0$$ and we can divide both parts by it --> is $$\frac{1}{3y}>1$$? As $$y$$ is an integer (no matter positive or negative) then the answer to this question is always NO (if it's a positive integer then $$\frac{1}{3y}<1$$ and if it's a negative integer then again: $$\frac{1}{3y}<0<1$$). Sufficient.

(2) x + y > 0 --> if $$x=y=1$$ then the answer will be NO but if $$x=3$$ and $$y=-1$$ then the answer will be YES. Not sufficient.

_________________

Kudos [?]: 128992 [8], given: 12185

Director
Status: -=Given to Fly=-
Joined: 04 Jan 2011
Posts: 830

Kudos [?]: 243 [0], given: 78

Location: India
Schools: Haas '18, Kelley '18
GMAT 1: 650 Q44 V37
GMAT 2: 710 Q48 V40
GMAT 3: 750 Q51 V40
GPA: 3.5
WE: Education (Education)
Re: If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

04 Feb 2011, 18:43
Damn
I thought it was x-1

Silly me! Good one man
_________________

"Wherever you go, go with all your heart" - Confucius

1. How to Review and Analyze your Mistakes (Post by BB at GMAT Club)

2. 4 Steps to Get the Most out out of your CATs (Manhattan GMAT Blog)

My Experience With GMAT

1. From 650 to 710 to 750 - My Tryst With GMAT

2. Quest to do my Best - My GMAT Journey Log

Kudos [?]: 243 [0], given: 78

Senior Manager
Joined: 28 Aug 2010
Posts: 259

Kudos [?]: 774 [0], given: 11

Re: If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

05 Feb 2011, 07:37
apologies AmrithS...i forgot to structure the question after posting it...

Thanks a ton ! Bunuel ....a major concept cleared.
_________________

Gmat: everything-you-need-to-prepare-for-the-gmat-revised-77983.html
-------------------------------------------------------------------------------------------------
Ajit

Kudos [?]: 774 [0], given: 11

Math Expert
Joined: 02 Sep 2009
Posts: 41892

Kudos [?]: 128992 [0], given: 12185

Re: If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

25 Jun 2013, 04:46
Expert's post
1
This post was
BOOKMARKED
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

Theory on Exponents: math-number-theory-88376.html

All DS Exponents questions to practice: search.php?search_id=tag&tag_id=39
All PS Exponents questions to practice: search.php?search_id=tag&tag_id=60

Tough and tricky DS exponents and roots questions with detailed solutions: tough-and-tricky-exponents-and-roots-questions-125967.html
Tough and tricky PS exponents and roots questions with detailed solutions: tough-and-tricky-exponents-and-roots-questions-125956.html

_________________

Kudos [?]: 128992 [0], given: 12185

Senior Manager
Joined: 24 Aug 2009
Posts: 499

Kudos [?]: 839 [1], given: 276

Schools: Harvard, Columbia, Stern, Booth, LSB,
Re: If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

28 Jul 2013, 21:25
1
KUDOS
abilash10 wrote:
If x and y are nonzero integers, is (x^-1 + y^-1)^-1 > [(x^-1)(y^-1)]^-1 ?
(1) x = 2y
(2) x + y > 0
I'm not quite satisfied with the official answer for this question from MGMAT

The original question can be reduced to
Is $$\frac{xy}{(x+y)}$$ > $$xy$$ ?

Statement 1
$$2y^2$$/3y >$$2y^2$$
$$2y^2$$ (1-3y)/3y >0 --------eq(2)

If Y is positive, the answer will be + -/+ --->Negative (-)
If Y is negative, the answer will be + +/- --->Negative (-)
Sufficient

Statement 2
x+y>0
If x = + & y = + , then $$\frac{xy}{(x+y)}$$ > $$xy$$ will be false
If x = - & y = + , then $$\frac{xy}{(x+y)}$$ > $$xy$$ will be True
Thus Insufficient
_________________

If you like my Question/Explanation or the contribution, Kindly appreciate by pressing KUDOS.
Kudos always maximizes GMATCLUB worth
-Game Theory

If you have any question regarding my post, kindly pm me or else I won't be able to reply

Kudos [?]: 839 [1], given: 276

Intern
Joined: 02 Feb 2013
Posts: 42

Kudos [?]: 11 [0], given: 20

Location: India
Concentration: Operations, Technology
GMAT 1: 690 Q47 V38
GMAT 2: 720 Q48 V41
GPA: 3.2
WE: Programming (Computer Software)
Re: If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

28 Jul 2013, 21:29
The original question can be reduced to
Is \frac{xy}{(x+y)} > xy ?

why can i not cancel out xy on both sides ? x & y are both nonzero.
if i do that, i'm left with : is (x+y)^-1 >1.

in which case, statement 2 gives me the answer, since it has a positive denominator

Kudos [?]: 11 [0], given: 20

Intern
Joined: 02 Feb 2013
Posts: 42

Kudos [?]: 11 [0], given: 20

Location: India
Concentration: Operations, Technology
GMAT 1: 690 Q47 V38
GMAT 2: 720 Q48 V41
GPA: 3.2
WE: Programming (Computer Software)
Re: If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

28 Jul 2013, 21:31
damn.. i jus realised that they may be non-zero, but xy cud still be negative.. my bad.. thanks...

Kudos [?]: 11 [0], given: 20

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16633

Kudos [?]: 273 [0], given: 0

Re: If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

21 Oct 2014, 07:12
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Kudos [?]: 273 [0], given: 0

Intern
Joined: 03 Aug 2014
Posts: 19

Kudos [?]: [0], given: 18

Re: If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

30 Jan 2015, 16:32
Hi Bunuel - in your explanation above, how do you get from (1/x + 1/y)^(-1) to ((x+y)/xy)^(-1)?

Kudos [?]: [0], given: 18

Math Expert
Joined: 02 Sep 2009
Posts: 41892

Kudos [?]: 128992 [0], given: 12185

Re: If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

31 Jan 2015, 05:59
cg0588 wrote:
Hi Bunuel - in your explanation above, how do you get from (1/x + 1/y)^(-1) to ((x+y)/xy)^(-1)?

Does not $$\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}$$ ?
_________________

Kudos [?]: 128992 [0], given: 12185

Manager
Joined: 04 Oct 2013
Posts: 176

Kudos [?]: 157 [0], given: 29

GMAT 1: 590 Q40 V30
GMAT 2: 730 Q49 V40
WE: Project Management (Entertainment and Sports)
If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

16 Mar 2015, 03:35
I solved it this way:

from the original inequality --> is xy/y+x > xy --> is xy((1/x+y) -1) > 0? to satisfy the inequality either xy > 0 and (1/x+y)-1 > 0 or xy < 0 and (1/x+y)-1 < 0.

Notice that 1/x+y is a proper fraction. So unless x+y = 1 this expression (1/x+y) is going to be negative. If that expression is negative we want xy to be negative as well.

statement 1. x=2y --> x/y=2/1 x and y have the same sign. If x and y are negative ((1/x+y) -1) is surely negative and xy is positive. Thus the overall expression is not > 0. If x and y are positive ((1/x+y) -1) is also negative and xy is positive. Thus the overall expression is not > 0.

sufficient

statement 2. x+y >0 we don't know the exact values of x and y. Assume that x is negative and y is positive and x<y then x+y > 0 still ((1/x+y) -1) is negative and xy is negative too, making the overall expression > 0. Assume that both x and y are positive and you end up with the same scenario as statement 1. Assume that x+y=1 and the overall expression becomes 0.

not sufficient.

_________________

learn the rules of the game, then play better than anyone else.

Kudos [?]: 157 [0], given: 29

GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16633

Kudos [?]: 273 [0], given: 0

Re: If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

17 Mar 2016, 21:47
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Kudos [?]: 273 [0], given: 0

VP
Joined: 14 Nov 2016
Posts: 1161

Kudos [?]: 1181 [0], given: 415

Location: Malaysia
Re: If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

28 Jan 2017, 07:01
Bunuel wrote:
ajit257 wrote:
If x and y are nonzero integers, is (x-1 + y-1)-1 > [(x-1)(y-1)]-1 ?

(1) x = 2y

(2) x + y > 0

I need to clarify a doubt in these types of questions. Firstly apologies guys for giving away too much info but it is important to clarify a doubt. If you solve the above equations you'll get 1/x+y > 1 ...so my question is why cant you solve it one step further and say is x+y < 1. Now if i follow the initial approach i get 1/3y > 1 for 1st statement so why cant we say 3y< 1. I got my ans wrong because of this . Please can some clarify if i am doing some thing conceptually wrong.

Apologies again for giving out too much.

First of all the question should be:

If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > (x^(-1)*y^(-1))^(-1) ?

Is $$(x^{-1}+y^{-1})^{-1}> (x^{-1}*y^{-1})^{-1}$$? --> is $$(\frac{1}{x}+\frac{1}{y})^{-1}>(\frac{1}{xy})^{-1}$$? --> is $$(\frac{x+y}{xy})^{-1}>xy$$ --> is $$\frac{xy}{x+y}>xy$$?

Now, from this point you cannot divide both parts of the inequality by $$xy$$ and write $$\frac{1}{x+y}>1$$ (as you did), because you don't know whether $$xy$$ is positive or negative: if $$xy>0$$ then you should write $$\frac{1}{x+y}>1$$ BUT if $$xy<0$$ then you should flip the sign and write $$\frac{1}{x+y}<1$$. But even if you knew that $$xy>0$$ then the next step of writing $$x+y<1$$ from $$\frac{1}{x+y}>1$$ would still be incorrect for the same exact reason: you don't k now whether $$x+y$$ is positive or negative, hence you can not muliply both sides of the inequality by $$x+y$$.

Never multiply or divide inequality by a variable (or by an expression with variable) unless you are sure of its sign since you do not know whether you must flip the sign of the inequality.

Thus the question is boiled down to: is $$\frac{xy}{x+y}>xy$$? Actually we can manipulate further but there is no need.

(1) x = 2y --> question becomes: is $$\frac{2y^2}{3y}>2y^2$$? Now, as we know that $$y$$ is nonzero then $$2y^2>0$$ and we can divide both parts by it --> is $$\frac{1}{3y}>1$$? As $$y$$ is an integer (no matter positive or negative) then the answer to this question is always NO ( if it's a positive integer then $$\frac{1}{3y}<1$$ and if it's a negative integer then again: $$\frac{1}{3y}<0<1$$ ). Sufficient.

(2) x + y > 0 --> if $$x=y=1$$ then the answer will be NO but if $$x=3$$ and $$y=-1$$ then the answer will be YES. Not sufficient.

Dear Bunuel, Could you elaborate on the highlighted sentence as I am confused with the sign
_________________

"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."

Kudos [?]: 1181 [0], given: 415

Math Expert
Joined: 02 Sep 2009
Posts: 41892

Kudos [?]: 128992 [0], given: 12185

Re: If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > [#permalink]

### Show Tags

28 Jan 2017, 07:59
ziyuenlau wrote:
Bunuel wrote:
ajit257 wrote:
If x and y are nonzero integers, is (x-1 + y-1)-1 > [(x-1)(y-1)]-1 ?

(1) x = 2y

(2) x + y > 0

I need to clarify a doubt in these types of questions. Firstly apologies guys for giving away too much info but it is important to clarify a doubt. If you solve the above equations you'll get 1/x+y > 1 ...so my question is why cant you solve it one step further and say is x+y < 1. Now if i follow the initial approach i get 1/3y > 1 for 1st statement so why cant we say 3y< 1. I got my ans wrong because of this . Please can some clarify if i am doing some thing conceptually wrong.

Apologies again for giving out too much.

First of all the question should be:

If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) > (x^(-1)*y^(-1))^(-1) ?

Is $$(x^{-1}+y^{-1})^{-1}> (x^{-1}*y^{-1})^{-1}$$? --> is $$(\frac{1}{x}+\frac{1}{y})^{-1}>(\frac{1}{xy})^{-1}$$? --> is $$(\frac{x+y}{xy})^{-1}>xy$$ --> is $$\frac{xy}{x+y}>xy$$?

Now, from this point you cannot divide both parts of the inequality by $$xy$$ and write $$\frac{1}{x+y}>1$$ (as you did), because you don't know whether $$xy$$ is positive or negative: if $$xy>0$$ then you should write $$\frac{1}{x+y}>1$$ BUT if $$xy<0$$ then you should flip the sign and write $$\frac{1}{x+y}<1$$. But even if you knew that $$xy>0$$ then the next step of writing $$x+y<1$$ from $$\frac{1}{x+y}>1$$ would still be incorrect for the same exact reason: you don't k now whether $$x+y$$ is positive or negative, hence you can not muliply both sides of the inequality by $$x+y$$.

Never multiply or divide inequality by a variable (or by an expression with variable) unless you are sure of its sign since you do not know whether you must flip the sign of the inequality.

Thus the question is boiled down to: is $$\frac{xy}{x+y}>xy$$? Actually we can manipulate further but there is no need.

(1) x = 2y --> question becomes: is $$\frac{2y^2}{3y}>2y^2$$? Now, as we know that $$y$$ is nonzero then $$2y^2>0$$ and we can divide both parts by it --> is $$\frac{1}{3y}>1$$? As $$y$$ is an integer (no matter positive or negative) then the answer to this question is always NO ( if it's a positive integer then $$\frac{1}{3y}<1$$ and if it's a negative integer then again: $$\frac{1}{3y}<0<1$$ ). Sufficient.

(2) x + y > 0 --> if $$x=y=1$$ then the answer will be NO but if $$x=3$$ and $$y=-1$$ then the answer will be YES. Not sufficient.

Dear Bunuel, Could you elaborate on the highlighted sentence as I am confused with the sign

We know that y is an integer. Now, for integer y, the answer to the question whether $$\frac{1}{3y}>1$$ will always be NO (no matter whether y is negative or positive). If y > 0, then $$\frac{1}{3y}<1$$ and if y < 0, then again $$\frac{1}{3y}<1$$.

Hope it's clear.
_________________

Kudos [?]: 128992 [0], given: 12185

Re: If x and y are nonzero integers, is (x^(-1) + y^(-1))^(-1) >   [#permalink] 28 Jan 2017, 07:59
Display posts from previous: Sort by