It is currently 22 Nov 2017, 22:52

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If x and y are nonzero integers, is x^y < y^x? (1) x =

Author Message
TAGS:

### Hide Tags

Senior Manager
Joined: 26 Jul 2005
Posts: 313

Kudos [?]: 18 [2], given: 0

Location: Los Angeles
If x and y are nonzero integers, is x^y < y^x? (1) x = [#permalink]

### Show Tags

27 Oct 2005, 16:28
2
KUDOS
11
This post was
BOOKMARKED
00:00

Difficulty:

55% (hard)

Question Stats:

64% (01:19) correct 36% (01:22) wrong based on 566 sessions

### HideShow timer Statistics

If x and y are nonzero integers, is x^y < y^x?

(1) x = y^2
(2) y > 2
[Reveal] Spoiler: OA

Kudos [?]: 18 [2], given: 0

Manager
Joined: 20 Mar 2005
Posts: 201

Kudos [?]: 16 [0], given: 0

Location: Colombia, South America

### Show Tags

27 Oct 2005, 17:04
I would pick A

x = y^2

so y^2^y = y^y^2 which i think is

y^2y = y^2y

so they are equal and you can answer the question

Kudos [?]: 16 [0], given: 0

Senior Manager
Joined: 05 Oct 2005
Posts: 485

Kudos [?]: 8 [0], given: 0

### Show Tags

27 Oct 2005, 17:32
i think its C

y^2y < y^y2

2y < y2

1 is Insuff b/c if y<=2, the answer is no, whereas when y>2, the answer is yes.

2) alone is insuff b/c it doesn't say anything about x (we need to know whether it is greater or less than 2.

Together, they are SUFF.
C

Kudos [?]: 8 [0], given: 0

Director
Joined: 24 Oct 2005
Posts: 572

Kudos [?]: 76 [0], given: 0

Location: NYC

### Show Tags

28 Oct 2005, 12:48
A
coz 1 ^2 < 1 ^2 .. No it is not.. False and it stands false for anyother value too.

Kudos [?]: 76 [0], given: 0

Manager
Joined: 01 Aug 2005
Posts: 68

Kudos [?]: 19 [0], given: 0

### Show Tags

28 Oct 2005, 13:43
Quote:
coz 1 ^2 < 1 ^2 .. No it is not.. False and it stands false for anyother value too.

I dont think its A, here is my reasoning.

Q: is x^y < y^x?

(1) x = y^2

if x is 4 and y is -2, statement 1 is correct but look at what happens.

4^-2 < -2^4
statement is now TRUE

if x is 4 and y is 2
4^2 < 2^4
statement is not true - they are equal.

Kudos [?]: 19 [0], given: 0

Manager
Joined: 01 Aug 2005
Posts: 68

Kudos [?]: 19 [0], given: 0

### Show Tags

28 Oct 2005, 18:28
Valley,

I agreed with C, knew it couldnt be A because of 2 and 4. Would be nice to see the OE though just to see whether we all thought the right way.

Kudos [?]: 19 [0], given: 0

Senior Manager
Joined: 26 Jul 2005
Posts: 313

Kudos [?]: 18 [0], given: 0

Location: Los Angeles

### Show Tags

28 Oct 2005, 22:34
2
This post was
BOOKMARKED
xennie - here is the OE...

It is helpful to note that (x^r)^s = x^(rs)

(1) From this, x = y^2, so by substitution then x^y = (y^2)^y or y^(2y), and y^x = y^(y^2). Comparing x^y to y^x can then be done by comparing y^(2y) to y^(y^2), or simply comparing the exponents 2y to y^2. If, for example, y = 2, then 2y = 4 and y^2 = 4, and then x^y would equal y^x. If, however, y = 3, then 2y = 6 and y^2 = 9, and so x^y would be less than y^x; NOT SUFFICIENT.

(2) It is known that y > 2, but no information about x is given; NOT SUFFICIENT.

If both (1) and (2) are taken together, then 2y is compared to y^2 (1) and from (2) it is known that y > 2, so 2y will always be less than y^2. Therefore, x^y < y^x.

Kudos [?]: 18 [0], given: 0

Manager
Joined: 30 May 2010
Posts: 189

Kudos [?]: 259 [0], given: 32

Re: Exponents/inequalities problem from QR 2nd DS 121 [#permalink]

### Show Tags

04 Aug 2010, 06:21
This is a tricky question. I think it relies on you misapplying the rule: $$(x^a)^b = x^{ab}$$. Is this only valid if a and b are constants?

Example:
(1) $$x = y^2$$;

$$x^y < y^x$$ therefore, $$(y^2)^y < y^{y^2}$$. How do you simplify this? The guide shows to $$y^{2y} < y^{y^2}$$. The left hand side makes sense to me.

Why would $$y^{y^2}$$ not simplify to $$y^{2y}$$ also? Plugging in numbers, it makes sense. I just want to understand the concept.

Kudos [?]: 259 [0], given: 32

Math Expert
Joined: 02 Sep 2009
Posts: 42305

Kudos [?]: 133079 [13], given: 12403

Re: Exponents/inequalities problem from QR 2nd DS 121 [#permalink]

### Show Tags

04 Aug 2010, 06:52
13
KUDOS
Expert's post
9
This post was
BOOKMARKED
jpr200012 wrote:
If x and y are nonzero integers, is $$x^y < y^x$$?

(1) $$x = y^2$$
(2) $$y > 2$$

If x and y are nonzero integers, is $$x^y < y^x$$?

(1) $$x = y^2$$ --> if $$x=y=1$$, then $$x^y=1=y^x$$, so the answer would be NO BUT if $$y=3$$ and $$x=9$$, then $$x^y=9^3<y^x=3^9$$, so the answer would be YES. Not sufficient.

(2) $$y>2$$. No info about $$x$$, not sufficient.

(1)+(2) From (1) $$x = y^2$$, thus the question becomes: is $$(y^2)^y<y^{(y^2)}$$? --> is $$y^{2y}<y^{(y^2)}$$? Now, since from (2) $$y=integer>2$$, then $$2y$$ will always be less than $$y^2$$, therefore $$y^{2y}$$ will be less than $$y^{(y^2)}$$. Sufficient.

jpr200012 wrote:
This is a tricky question. I think it relies on you misapplying the rule: $$(x^a)^b = x^{ab}$$. Is this only valid if a and b are constants?

Example:
(1) $$x = y^2$$;

$$x^y < y^x$$ therefore, $$(y^2)^y < y^{y^2}$$. How do you simplify this? The guide shows to $$y^{2y} < y^{y^2}$$. The left hand side makes sense to me.

Why would $$y^{y^2}$$ not simplify to $$y^{2y}$$ also? Plugging in numbers, it makes sense. I just want to understand the concept.

If exponentiation is indicated by stacked symbols, the rule is to work from the top down, thus:
$$a^m^n=a^{(m^n)}$$ and not $$(a^m)^n$$, which on the other hand equals to $$a^{mn}$$.

So:
$$(a^m)^n=a^{mn}$$;

$$a^m^n=a^{(m^n)}$$ and not $$(a^m)^n$$.

Hope it's clear.
_________________

Kudos [?]: 133079 [13], given: 12403

Intern
Joined: 24 Jul 2007
Posts: 5

Kudos [?]: [0], given: 5

Re: Exponents/inequalities problem from QR 2nd DS 121 [#permalink]

### Show Tags

05 Aug 2010, 02:25
Posting this msg here even though i sent a private msg to you-for the benefit of others here.

Hi Bunuel, apprecite ur wonderful explanation. I am having trouble in DS question where x & y are termed as non-zero integers.

What is the best way to analyze instances where x & y are are NEGATIVE integers. I see that u have not analyzed this possibility. is there a trick to be sure that this is not needed as u have solved in this case?

Kudos [?]: [0], given: 5

Math Expert
Joined: 02 Sep 2009
Posts: 42305

Kudos [?]: 133079 [1], given: 12403

Re: Exponents/inequalities problem from QR 2nd DS 121 [#permalink]

### Show Tags

05 Aug 2010, 03:12
1
KUDOS
Expert's post
ramanankris wrote:
Posting this msg here even though i sent a private msg to you-for the benefit of others here.

Hi Bunuel, apprecite ur wonderful explanation. I am having trouble in DS question where x & y are termed as non-zero integers.

What is the best way to analyze instances where x & y are are NEGATIVE integers. I see that u have not analyzed this possibility. is there a trick to be sure that this is not needed as u have solved in this case?

On DS questions when plugging numbers, goal is to prove that the statement is not sufficient. So we should try to get a YES answer with one chosen number(s) and a NO with another.

For statement (1) I got YES answer and then NO answer with positive numbers, so my goal to prove that this statement was not sufficient was reached, hence there was no need to try negative numbers.

Hope it's clear.
_________________

Kudos [?]: 133079 [1], given: 12403

Intern
Joined: 24 Jul 2007
Posts: 5

Kudos [?]: [0], given: 5

Re: Exponents/inequalities problem from QR 2nd DS 121 [#permalink]

### Show Tags

10 Aug 2010, 02:34
Thanks Bunuel, you are an inspiration.

Kudos [?]: [0], given: 5

VP
Status: Current Student
Joined: 24 Aug 2010
Posts: 1345

Kudos [?]: 423 [1], given: 73

Location: United States
GMAT 1: 710 Q48 V40
WE: Sales (Consumer Products)

### Show Tags

25 May 2011, 11:54
1
KUDOS

Statement 1: Insufficient

x=y^2 tells us that x is positive, but it tells us nothing about y.

For example if y=1 then x=1. Therefore 1^1=1^1 and x^y=y^x
If y=-2 then x=4. Therefore 4^-2<-2^4
Since we cannot get a definite yes or no from this statement, it is INSUFFICIENT

Statement 2: Insufficient
y>2
This tells us nothing about x.
If x=-1 and y=4, then -1^4>4^-1
If x=5 and y=3, then 5^3<3^5
Since we cannot get a definite yes or no from this statement, it is INSUFFICIENT

Putting both statements together we know that y>2 and x=y^2
If y=4, then x=16, then 16^4<4^16 (16^4 = 4^8).
No matter which integers you choose x^y < y^x, so Statements 1 and 2 together are SUFFICIENT. The answer is C.
_________________

The Brain Dump - From Low GPA to Top MBA (Updated September 1, 2013) - A Few of My Favorite Things--> http://cheetarah1980.blogspot.com

Kudos [?]: 423 [1], given: 73

VP
Status: There is always something new !!
Affiliations: PMI,QAI Global,eXampleCG
Joined: 08 May 2009
Posts: 1283

Kudos [?]: 286 [0], given: 10

### Show Tags

26 May 2011, 01:03
a check for y = +|-1 and x = 1. giving different values for the equation.
Hence not sufficient.

b check for y = 3 and x = -1 | 9 giving different values for the equation.
Not sufficient.

a+b

y=3, x= 9
y=4 x = 16 give same value meaning LHS = RHS in fact.

hence C.
_________________

Visit -- http://www.sustainable-sphere.com/
Promote Green Business,Sustainable Living and Green Earth !!

Kudos [?]: 286 [0], given: 10

Senior Manager
Joined: 03 Mar 2010
Posts: 421

Kudos [?]: 368 [1], given: 22

Schools: Simon '16 (M)

### Show Tags

26 May 2011, 01:04
1
KUDOS
if x and y are nonzero integers is, x^y < y^x?
(1) x = y^2
(2) y > 2

x^y < y^x
Stmt1: x=y^2
$$x^y ---> y^2^y= y^(2y)$$
$$y^x ---> y^(y^2)$$
Is y^(2y) < y^(y^2) ?
Take log both side
2y logy < y^2logy ?
Canceling log y
Is 2y < y^2 ?
Is 2<y ? i.e Is y>2?
We don't know the value of y. Hence not sufficient.

Stmt2: y>2
Not sufficient.

Combining, from Stmt2: we know that y>2 .
Hence Stmt1: Is y>2 can be answered taking Stmt1 and Stmt2 together.

OA C.
_________________

My dad once said to me: Son, nothing succeeds like success.

Kudos [?]: 368 [1], given: 22

VP
Status: Current Student
Joined: 24 Aug 2010
Posts: 1345

Kudos [?]: 423 [0], given: 73

Location: United States
GMAT 1: 710 Q48 V40
WE: Sales (Consumer Products)

### Show Tags

26 May 2011, 04:10
if x and y are nonzero integers is, x^y < y^x?
(1) x = y^2
(2) y > 2

x^y < y^x
Stmt1: x=y^2
$$x^y ---> y^2^y= y^(2y)$$
$$y^x ---> y^(y^2)$$
Is y^(2y) < y^(y^2) ?
Take log both side
2y logy < y^2logy ?
Canceling log y
Is 2y < y^2 ?
Is 2<y ? i.e Is y>2?
We don't know the value of y. Hence not sufficient.

Stmt2: y>2
Not sufficient.

Combining, from Stmt2: we know that y>2 .
Hence Stmt1: Is y>2 can be answered taking Stmt1 and Stmt2 together.

OA C.

Nice solve. However, GMAT Math does not require the knowledge of logarithms. Definitely can help on the test, but for people who haven't touched a logarithm since high school it's not necessary to relearn them to answer this question.
_________________

The Brain Dump - From Low GPA to Top MBA (Updated September 1, 2013) - A Few of My Favorite Things--> http://cheetarah1980.blogspot.com

Kudos [?]: 423 [0], given: 73

Math Forum Moderator
Joined: 20 Dec 2010
Posts: 1965

Kudos [?]: 2098 [1], given: 376

### Show Tags

26 May 2011, 04:43
1
KUDOS
Is 2y < y^2 ?
Is 2<y ? i.e Is y>2?

The rephrase is not complete.

$$2y<y^2$$
$$y^2-2y>0$$
$$y(y-2)>0$$

************************
If y>0; y-2>0;
Is y>2
OR
y<0
***********************

However, "y<0" actually doesn't hold true for x^y<y^x (for y=-1)
*********************

The only point I am trying to make here is that solving through logarithm may give us undesired results. What if x^y or y^x is negative. Then, taking the logarithms would be wrong!!!

*******************************************
_________________

Kudos [?]: 2098 [1], given: 376

Senior Manager
Joined: 03 Mar 2010
Posts: 421

Kudos [?]: 368 [0], given: 22

Schools: Simon '16 (M)

### Show Tags

27 May 2011, 02:21
On another look,
From stmt1: $$x=y^2$$, so$$y=\sqrt{x}$$. Since $$\sqrt{x}$$will always be a positive number, y will always be positive.
Substituting, in $$x^y < y^x$$,
$$x^sqrt(x)$$ < $$\sqrt{x} ^ x$$
Now we can safely take log as both sides are positive.
$$sqrt(x)logx < xlog sqrt(x)$$
$$sqrt(x) logx < x/2 log x$$
Is $$sqrt(x) < x/2$$ ?
Is $$2 < sqrt(x)$$ ?
Cannot be determined. Not sufficient.

Stmt2: y>2. Not sufficient.

Combining, from stmt1 $$y=\sqrt{x}$$
From stmt2: y>2. i.e $$\sqrt{x}$$ >2.
Hence $$2 < sqrt(x)$$ ? . Yes.

OA C.
_________________

My dad once said to me: Son, nothing succeeds like success.

Kudos [?]: 368 [0], given: 22

VP
Status: Current Student
Joined: 24 Aug 2010
Posts: 1345

Kudos [?]: 423 [0], given: 73

Location: United States
GMAT 1: 710 Q48 V40
WE: Sales (Consumer Products)

### Show Tags

27 May 2011, 04:21
On another look,
From stmt1: $$x=y^2$$, so$$y=\sqrt{x}$$. Since $$\sqrt{x}$$will always be a positive number, y will always be positive.
Substituting, in $$x^y < y^x$$,
$$x^sqrt(x)$$ < $$\sqrt{x} ^ x$$
Now we can safely take log as both sides are positive.
$$sqrt(x)logx < xlog sqrt(x)$$
$$sqrt(x) logx < x/2 log x$$
Is $$sqrt(x) < x/2$$ ?
Is $$2 < sqrt(x)$$ ?
Cannot be determined. Not sufficient.

Stmt2: y>2. Not sufficient.

Combining, from stmt1 $$y=\sqrt{x}$$
From stmt2: y>2. i.e $$\sqrt{x}$$ >2.
Hence $$2 < sqrt(x)$$ ? . Yes.

OA C.

x=y^2, Just because x is positive doesn't mean y has to be positive. Even powers always yield a positive number, even if the base is negative.
For example, if x=4 then y can be 2 or -2. The only thing we can determine from statement 1 is that x is positive. y can be either positive or negative. If y is negative then x^y would be 1/x^y. 1/x^y may or may not be greater than y^x. y=-3, x=9 vs y=3, x=9. 1/9^3>-3^9. 9^3<3^9.
_________________

The Brain Dump - From Low GPA to Top MBA (Updated September 1, 2013) - A Few of My Favorite Things--> http://cheetarah1980.blogspot.com

Kudos [?]: 423 [0], given: 73

Senior Manager
Joined: 17 Jun 2015
Posts: 261

Kudos [?]: 40 [0], given: 165

GMAT 1: 540 Q39 V26
GMAT 2: 680 Q46 V37
Re: If x and y are nonzero integers, is x^y < y^x? (1) x = [#permalink]

### Show Tags

19 Dec 2015, 00:09
Bunuel Would this approach be correct?

statement 1

x = y^2

y^2 is positive. So x is positive. But we aren't sure about the magnitude of y. So Statement 1 is insufficient.

Statement 2:
Insufficient since no relation between x and y

Combining the two, statement two assures that y is positive. Hence, C
_________________

Fais de ta vie un rêve et d'un rêve une réalité

Kudos [?]: 40 [0], given: 165

Re: If x and y are nonzero integers, is x^y < y^x? (1) x =   [#permalink] 19 Dec 2015, 00:09

Go to page    1   2    Next  [ 23 posts ]

Display posts from previous: Sort by