It is currently 29 Jun 2017, 07:48

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# If x and y are positive integers, is xy a multiple of 8? (1)

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Manager
Joined: 25 Jul 2010
Posts: 141
If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

09 Oct 2010, 11:50
1
KUDOS
9
This post was
BOOKMARKED
00:00

Difficulty:

65% (hard)

Question Stats:

57% (02:01) correct 43% (01:12) wrong based on 486 sessions

### HideShow timer Statistics

If x and y are positive integers, is xy a multiple of 8?

(1) The greatest common divisor of x and y is 10
(2) The least common multiple of x and y is 100
[Reveal] Spoiler: OA

Last edited by Bunuel on 19 Feb 2016, 01:57, edited 2 times in total.
Edited typo
Math Expert
Joined: 02 Sep 2009
Posts: 39759
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

09 Oct 2010, 12:01
14
KUDOS
Expert's post
8
This post was
BOOKMARKED
Orange08 wrote:
If x and y are positive integers, is xy a multiple of 8?

a) Greatest common divisor of x and y is 10
b) Least common factor of x and y is 100

(1) $$GCD(x,y)=10$$ --> if $$x=10$$ and $$y=10$$, then $$xy=100$$, which is not divisible by 8 BUT if $$x=10$$ and $$y=20$$, then $$xy=200$$ which is divisible by 8. Two different answers. Not sufficient.

(2) $$LCM(x,y)=100$$ --> if $$x=1$$ and $$y=100$$, then $$xy=100$$, which is not divisible by 8 BUT if $$x=4$$ and $$y=50$$, then $$xy=200$$ which is divisible by 8. Two different answers. Not sufficient.

(1)+(2) The most important property of LCM and GCD is: for any positive integers $$x$$ and $$y$$, $$x*y=GCD(x,y)*LCM(x,y)=10*100=1000$$ --> 1000 is divisible by 8. Sufficient.

_________________
Manager
Joined: 17 Apr 2010
Posts: 99
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

09 Oct 2010, 20:24

Posted from my mobile device
Manager
Joined: 25 Aug 2010
Posts: 93
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

12 Oct 2010, 08:51
It is good to see these kind of probs. thxs Bunuel ...
Manager
Joined: 29 Sep 2008
Posts: 143
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

13 Oct 2010, 10:53
product of two numbers=HCF*LCM
Intern
Joined: 19 Oct 2010
Posts: 8
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

11 Dec 2010, 15:14
Great explanation, thank you!
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7453
Location: Pune, India
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

12 Dec 2010, 03:58
Orange08 wrote:
If x and y are positive integers, is xy a multiple of 8?

(1) The greatest common divisor of x and y is 10
(2) The least common multiple of x and y is 100

An important property of LCM and GCF is
x*y = GCD*LCM

(For explanation why this works, check out this link: http://gmatclub.com/forum/gcf-lcm-ds-105745.html#p827452)

Ques: Is xy divisible by 8?

Stmnt 1: GCD = 10
If GCD is 10, LCM will be a multiple of 10 (the link above will explain why). Let us say LCM = 10a
x*y = 10*10a = 100a
We still cannot say whether xy is divisible by 8. Not sufficient.

Stmnt2: LCM = 100
If LCM is 100, we cannot say what GCD is. It could be 1 or 10 or 50 etc.
x*y = GCD*100
We cannot say whether xy is divisible by 8. Not sufficient.

Taking both stmnts together, x*y = 10*100 = 1000
Since 1000 is divisible by 8, x*y is divisible by 8. Sufficient.
_________________

Karishma
Veritas Prep | GMAT Instructor
My Blog

Get started with Veritas Prep GMAT On Demand for $199 Veritas Prep Reviews Current Student Status: Up again. Joined: 31 Oct 2010 Posts: 533 Concentration: Strategy, Operations GMAT 1: 710 Q48 V40 GMAT 2: 740 Q49 V42 Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink] ### Show Tags 28 Dec 2010, 03:08 mrinal2100 wrote: product of two numbers=HCF*LCM Thats a good point. HCF (x,y)* LCM (x,y)= x*y _________________ My GMAT debrief: http://gmatclub.com/forum/from-620-to-710-my-gmat-journey-114437.html Director Status: Gonna rock this time!!! Joined: 22 Jul 2012 Posts: 520 Location: India GMAT 1: 640 Q43 V34 GMAT 2: 630 Q47 V29 WE: Information Technology (Computer Software) Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink] ### Show Tags 25 Jan 2013, 01:20 VeritasPrepKarishma wrote: Orange08 wrote: If x and y are positive integers, is xy a multiple of 8? (1) The greatest common divisor of x and y is 10 (2) The least common multiple of x and y is 100 An important property of LCM and GCF is x*y = GCD*LCM (For explanation why this works, check out this link: http://gmatclub.com/forum/gcf-lcm-ds-105745.html#p827452) Ques: Is xy divisible by 8? Stmnt 1: GCD = 10 If GCD is 10, LCM will be a multiple of 10 (the link above will explain why). Let us say LCM = 10a x*y = 10*10a = 100a We still cannot say whether xy is divisible by 8. Not sufficient. Stmnt2: LCM = 100 If LCM is 100, we cannot say what GCD is. It could be 1 or 10 or 50 etc. x*y = GCD*100 We cannot say whether xy is divisible by 8. Not sufficient. Taking both stmnts together, x*y = 10*100 = 1000 Since 1000 is divisible by 8, x*y is divisible by 8. Sufficient. Answer (C). Hi Karishma, I cehcked the link but I did not understand why LCM will be a multiple of 10.. I understand that LCM*GCD=prod of 2 nos.. but don't understand why LCM has to be a multiple of 10.. Also, could you please help us with an approach on generating numbers for testing when a LCM is given.. in this case, lcm of x and y is 100.. .so how do we generate numbers whose lcm would be 100. For gcd, we can write the GCD and multiply that by different numbers to get the pair of numbers.. Kindly explain how to do that for LCM _________________ hope is a good thing, maybe the best of things. And no good thing ever dies. Who says you need a 700 ?Check this out : http://gmatclub.com/forum/who-says-you-need-a-149706.html#p1201595 My GMAT Journey : http://gmatclub.com/forum/end-of-my-gmat-journey-149328.html#p1197992 Veritas Prep GMAT Instructor Joined: 16 Oct 2010 Posts: 7453 Location: Pune, India Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink] ### Show Tags 25 Jan 2013, 20:18 Sachin9 wrote: Hi Karishma, I cehcked the link but I did not understand why LCM will be a multiple of 10.. I understand that LCM*GCD=prod of 2 nos.. but don't understand why LCM has to be a multiple of 10.. Also, could you please help us with an approach on generating numbers for testing when a LCM is given.. in this case, lcm of x and y is 100.. .so how do we generate numbers whose lcm would be 100. For gcd, we can write the GCD and multiply that by different numbers to get the pair of numbers.. Kindly explain how to do that for LCM GIven that GCD = 10. What is GCD? It is the greatest common factor of two numbers i.e. both the numbers must have that factor. When you find the LCM of the numbers, the LCM includes all the factors of both the numbers. Hence, it will include 10 too. e.g. GCD = 10 Numbers: 10x, 10y where x and y are co-prime. What will be the LCM? LCM = 10xy (includes all factors of both the numbers) In this question you don't need to list out the possible numbers given LCM = 100 but if you need to do it in another question, this is how you can handle that: LCM = 100 = 2^2*5^2 Numbers: Split the primes -> (4, 25) Make one number = LCM -> (1, 100), (2, 100), (4, 100), (5, 100), (10, 100), (20, 100), (25, 100), (50, 100), (100, 100) One number must have the highest power of each prime -> (2^2*5, 2*5^2 which is 20, 50), (2^2, 2*5^2 which is 4, 50), (2^2*5, 5^2 which is 20, 25) The overall strategy is this: Split the LCM into its prime factors. At least one number must have the highest power of each prime. LCM = 2^a*3^b*5^c At least one number must have 2^a, same or another number must have 3^b and same or another number must have 5^c. There are various possibilities. _________________ Karishma Veritas Prep | GMAT Instructor My Blog Get started with Veritas Prep GMAT On Demand for$199

Veritas Prep Reviews

Manager
Joined: 08 Dec 2012
Posts: 66
Location: United Kingdom
WE: Engineering (Consulting)
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

27 Jan 2013, 11:26
Sachin9 wrote:
VeritasPrepKarishma wrote:
Orange08 wrote:
If x and y are positive integers, is xy a multiple of 8?

(1) The greatest common divisor of x and y is 10
(2) The least common multiple of x and y is 100

An important property of LCM and GCF is
x*y = GCD*LCM

(For explanation why this works, check out this link: http://gmatclub.com/forum/gcf-lcm-ds-105745.html#p827452)

Ques: Is xy divisible by 8?

Stmnt 1: GCD = 10
If GCD is 10, LCM will be a multiple of 10 (the link above will explain why). Let us say LCM = 10a
x*y = 10*10a = 100a
We still cannot say whether xy is divisible by 8. Not sufficient.

Stmnt2: LCM = 100
If LCM is 100, we cannot say what GCD is. It could be 1 or 10 or 50 etc.
x*y = GCD*100
We cannot say whether xy is divisible by 8. Not sufficient.

Taking both stmnts together, x*y = 10*100 = 1000
Since 1000 is divisible by 8, x*y is divisible by 8. Sufficient.

Hi Karishma,

I cehcked the link but I did not understand why LCM will be a multiple of 10.. I understand that LCM*GCD=prod of 2 nos.. but don't understand why LCM has to be a multiple of 10..

Also, could you please help us with an approach on generating numbers for testing when a LCM is given.. in this case, lcm of x and y is 100.. .so how do we generate numbers whose lcm would be 100.

For gcd, we can write the GCD and multiply that by different numbers to get the pair of numbers..
Kindly explain how to do that for LCM

I will look at this in a simpler manner.

GCF is the multiple of the lowest power of common factors (of x & y). LCM is the multiple of highest power of common factors. Therefore GCF is a factor is LCM. Since statement 1 says GCF is 10, so LCM can be assumed as multiple of 10.

Hope this is clear
Intern
Joined: 27 Dec 2012
Posts: 12
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

30 Jan 2013, 23:13
Yes...
I was able to crack this question..

it gives an immense boost before GMAT
Intern
Joined: 04 May 2013
Posts: 3
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

06 Jul 2013, 20:54
For xy to be a multiple of 8 , xy should have minimum of 3 2's.

1. Gcd(x,y)=10 ===> x= 5*2 *m (where m can be any integer)
y= 5*2* n (where n can be any integer)
This does not clearly say that xy will be divisible by 8 because we are sure of only two 2's.

2. Lcm(x,y)= 100= 5^2* 2^2.====> It gives us different combinations of x and y. For eg: x= 5^2*2^2, y= 5*1, or x=5* 2^2, y= 5^2* 2 etc. Hence, xy may or may not be divisible by 8.

When 1+ 2 then, x= 5*2 , y= 5^2* 2^2 or vice versa. In any case we can see that xy is a multiple of 8.

Hence, C is the answer.
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16033
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

17 Sep 2015, 08:11
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16033
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

02 Oct 2016, 09:27
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Senior Manager
Joined: 26 Oct 2016
Posts: 468
Location: United States
Concentration: Marketing, International Business
Schools: HBS '19
GMAT 1: 770 Q51 V44
GPA: 4
WE: Education (Education)
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

12 Feb 2017, 04:53
Rule used for this :

HCF*LCM= Number 1* Number 2

Hence C It is!!
_________________

Thanks & Regards,
Anaira Mitch

Intern
Joined: 05 Feb 2014
Posts: 28
GMAT 1: 700 Q45 V40
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

07 Apr 2017, 16:32
I believe these sort of questions can be handled without remembering the formula : X*Y = LCM (X, Y) * GCF (X,Y)

Let's see how,

Statement 1 : The greatest common divisor of x and y is 10

What this essentially means is that we have two numbers x and y, that can be written in the following way :
x = 2*5*A
y = 2*5*B , where A and B are co-primes. (If they had any common factor, it would've been considered in the GCF)
Now, x*y = 2*5*2*5*A*B => Now in order for x*y to be a factor of 8, we need at least one more 2 in either A or B; A condition can cannot be guaranteed just with the statement 1. Hence, insufficient.

Statement 2 : The least common multiple of x and y is 100

Statement 2 alone is not sufficient. Consider the below 2 examples :

Let x = 1 and y = 100. LCM (x,y) = 100 and x*y = 100 (not a multiple of 8)
Let x = 2 and y = 2*2*5*5. LCM (x,y) = 100 and x*y = 200 (multiple of 8)

Hence, statement 2 alone is not sufficient.

Now, considering statement 1 and 2 together :

Statement 1 : The greatest common divisor of x and y is 10
x = 2*5*A
y = 2*5*B , where A and B are co-primes.

Statement 2 : The least common multiple of x and y is 100
LCM (x,y) = 2*5 *A*B = 100
=> A*B = 10
=> The only combination possible is 1*10 since A and B are co-primes.

Now , x*y = 2*5*2*5*2*5 (Always a multiple of 8).

Option C is the correct answer.
Would like to know your thoughts on using this approach while solving similar problems.
BSchool Forum Moderator
Joined: 12 Aug 2015
Posts: 2185
Re: If x and y are positive integers, is xy a multiple of 8? (1) [#permalink]

### Show Tags

29 Apr 2017, 17:30
Nice official question.
I made test cases to reject Statement 1 and 2 as =>
Statement 1 =>(10,10) and (10,10000) => Insufficient
Statement 2 =>(1,100) and (100,100)=> Insufficient

Combing them and using LCM*GCD=Product of two integers => xy=1000=8*125
Hence xy is a multiple of 8

Hence sufficient

SMASH THAT C.

_________________

Give me a hell yeah ...!!!!!

Re: If x and y are positive integers, is xy a multiple of 8? (1)   [#permalink] 29 Apr 2017, 17:30
Similar topics Replies Last post
Similar
Topics:
If x,y are positive integers, is x^y even? 1) x is even 3 09 Jun 2017, 02:33
If x and y are positive integers, does x–y = 0? (1) 7 03 Mar 2017, 06:40
2 For positive integers x and y, x^y*8^3=2(10^8). What is the value of y 3 13 Feb 2017, 08:44
1 If x and y are positive integers, is 2x a multiple of y? (1) 4 17 Sep 2011, 01:22
13 If x and y are positive integers, is xy a multiple of 8 8 19 Feb 2016, 01:58
Display posts from previous: Sort by

# If x and y are positive integers, is xy a multiple of 8? (1)

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group and phpBB SEO Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.