Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x|< x [#permalink]

Show Tags

24 Apr 2013, 18:25

Bunuel wrote:

Hussain15 wrote:

If x is not equal to 0, is |x| less than 1?

(1) x/|x|< x

(2) |x| > x

Will really appreciate if answer is supported by explanation.

\(x\neq{0}\), is \(|x|<1\)? Which means is \(-1<x<1\)? (\(x\neq{0}\))

(1) \(\frac{x}{|x|}< x\) Two cases: A. \(x<0\) --> \(\frac{x}{-x}<x\) --> \(-1<x\). But remember that \(x<0\), so \(-1<x<0\)

B. \(x>0\) --> \(\frac{x}{x}<x\) --> \(1<x\).

Two ranges \(-1<x<0\) or \(x>1\). Which says that \(x\) either in the first range or in the second. Not sufficient to answer whether \(-1<x<1\). (For instance \(x\) can be \(-0.5\) or \(3\))

Second approach: look at the fraction \(\frac{x}{|x|}\) it can take only two values: 1 for \(x>0\) --> so we would have: \(1<x\); Or -1 for \(x<0\) --> so we would have: \(-1<x\) and as we considering the range for which \(x<0\) then completer range would be: \(-1<x<0\).

The same two ranges: \(-1<x<0\) or \(x>1\).

(2) \(|x| > x\). Well this basically tells that \(x\) is negative, as if x were positive or zero then \(|x|\) would be equal to \(x\). Only one range: \(x<0\), but still insufficient to say whether \(-1<x<1\). (For instance \(x\) can be \(-0.5\) or \(-10\))

Or two cases again: \(x<0\)--> \(-x>x\)--> \(x<0\). \(x>0\) --> \(x>x\): never correct.

(1)+(2) Intersection of the ranges from (1) and (2) is the range \(-1<x<0\) (\(x<0\) (from 2) and \(-1<x<0\) or \(x>1\) (from 1), hence \(-1<x<0\)). Every \(x\) from this range is definitely in the range \(-1<x<1\). Sufficient.

Answer: C.

Buenel terrific explanation. This system, that you use for solving inequations, is quite fundamental and hard to be wrong. But is it really always the quickest way??
_________________

When you feel like giving up, remember why you held on for so long in the first place.

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x|< x [#permalink]

Show Tags

25 Apr 2013, 09:17

Bunuel wrote:

When \(x<0\), then \(|x|=-x\), thus \(\frac{x}{|x|}<x\) becomes \(\frac{x}{-x}<x\) --> \(-1<x\) but since \(x<0\), then \(-1<x<0\).

Hope it's clear.

Thanks. One more follow-up for clarification - Isn't the absolute value of a negative value positive? So if x<0 (x is a negative number), then the absolute value of x should be positive? i.e. |-x|=x?

When \(x<0\), then \(|x|=-x\), thus \(\frac{x}{|x|}<x\) becomes \(\frac{x}{-x}<x\) --> \(-1<x\) but since \(x<0\), then \(-1<x<0\).

Hope it's clear.

Thanks. One more follow-up for clarification - Isn't the absolute value of a negative value positive? So if x<0 (x is a negative number), then the absolute value of x should be positive? i.e. |-x|=x?

First of all \(|-x|=|x|\). Next, if \(x<0\), then \(|x|=|negative|=-x=-negative=positive\).

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x|< x [#permalink]

Show Tags

11 Jul 2013, 14:43

If x is not equal to 0, is |x| less than 1?

|x|<1 Is -1<x<1

(1) x/|x|< x

x/|x|< x Two cases: x>0, x<0

x>0 x/|x|< x x/x<x 1<x

If x>0 and x>1 then x>1 If x>1 then |x| is NOT less than 1

x<0 x/|x|< x -x/|-x|<x -1<x

-1<x<0 if -1<x<0 then |x| IS less than 1 INSUFFICIENT

(2) |x| > x

If the absolute value of x is greater than x than x must be negative. However, |-x| could be less than 1 or greater than 1 depending on the value of x. INSUFFICIENT

1+2 x must be negative and x from #1 x is either >1 or between -1 and 0. Therefore, we know -1<x<0 which means that |x| is always less than 1. SUFFICIENT

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x|< x [#permalink]

Show Tags

06 Aug 2013, 08:42

Bunuel wrote:

Hussain15 wrote:

If x is not equal to 0, is |x| less than 1?

(1) x/|x|< x

(2) |x| > x

Will really appreciate if answer is supported by explanation.

\(x\neq{0}\), is \(|x|<1\)? Which means is \(-1<x<1\)? (\(x\neq{0}\))

(1) \(\frac{x}{|x|}< x\) Two cases: A. \(x<0\) --> \(\frac{x}{-x}<x\) --> \(-1<x\). But remember that \(x<0\), so \(-1<x<0\)

B. \(x>0\) --> \(\frac{x}{x}<x\) --> \(1<x\).

Two ranges \(-1<x<0\) or \(x>1\). Which says that \(x\) either in the first range or in the second. Not sufficient to answer whether \(-1<x<1\). (For instance \(x\) can be \(-0.5\) or \(3\))

Second approach: look at the fraction \(\frac{x}{|x|}\) it can take only two values: 1 for \(x>0\) --> so we would have: \(1<x\); Or -1 for \(x<0\) --> so we would have: \(-1<x\) and as we considering the range for which \(x<0\) then completer range would be: \(-1<x<0\).

The same two ranges: \(-1<x<0\) or \(x>1\).

(2) \(|x| > x\). Well this basically tells that \(x\) is negative, as if x were positive or zero then \(|x|\) would be equal to \(x\). Only one range: \(x<0\), but still insufficient to say whether \(-1<x<1\). (For instance \(x\) can be \(-0.5\) or \(-10\))

Or two cases again: \(x<0\)--> \(-x>x\)--> \(x<0\). \(x>0\) --> \(x>x\): never correct.

(1)+(2) Intersection of the ranges from (1) and (2) is the range \(-1<x<0\) (\(x<0\) (from 2) and \(-1<x<0\) or \(x>1\) (from 1), hence \(-1<x<0\)). Every \(x\) from this range is definitely in the range \(-1<x<1\). Sufficient.

Answer: C.

Hi bunel,

hw is that we can have two ranges x<0 & x>0. How we got this ranges?

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x|< x [#permalink]

Show Tags

29 Sep 2014, 07:08

The question asks "is \(-1<x<1\)?" We got that \(x\) is in the range \(-1<x<0\) (red area). Now, as ANY \(x\) from this range (from red area) is indeed in \(-1<x<1\), then we can answer YES to our original question.

Hope it's clear.[/quote]

Exactly, based on your explanation above, Though the answer is YES it is sufficient to answer but the answer to the question is

That for x=0.5 it is in the range -1<x<1 but it is NOT part of -1<x<0 which we found out. So it is not possible to say that all possible values of -1<x<0 come under -1<x<1 unless ofcourse it is specified that x is an integer.

Exactly, based on your explanation above, Though the answer is YES it is sufficient to answer but the answer to the question is the range -1<x<1 for x is NO as -1<x<0 is the range and so x could be 0.5 and not be part of the -1<x<0 .

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x|< x [#permalink]

Show Tags

29 Sep 2014, 09:52

Bunuel wrote:

earnit wrote:

Exactly, based on your explanation above, Though the answer is YES it is sufficient to answer but the answer to the question is the range -1<x<1 for x is NO as -1<x<0 is the range and so x could be 0.5 and not be part of the -1<x<0 .

When we combine the statements we get that -1 < x < 0, then HOW can x be 0.5???

I'm sorry if it comes across like that but as per my understanding, the Question is if x lies between -1 and 1 and we find out that x lies between -1 and 0 so we are not entirely going by the asked range -1 < x < 1 is what i think.

But yes, the range of -1 < x < 0 comes under the broad -1 < x < 1 and so that is why it is correct.

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x|< x [#permalink]

Show Tags

21 Oct 2014, 15:46

Thoughtosphere wrote:

If x is not equal to 0, is |x| less than 1?

(1) x/|x|< x

(2) |x| > x

Will really appreciate if answer is supported by explanation.

1 - x / |x| < x This would mean that -1 < x < 0 & 0 < x <infinite Thus 1 is insufficient

2 - |x| > x - This would mean that negative infinite values < x < 0 This is also not sufficient.

Combining 1 & 2 - the overlapping region is -1 < x < 0

We can conclude that |x| < 1

So C

Solving the Question is not much of a problem as deciding whether our solved range: \(-1 < x < 0\) is SUFFICIENT to answer the asked range: \(-1 < x < 1\)

I need to understand that: Is our answer sufficient to conclude that YES x lies between (-1,1) even though our solution was that x lies between (-1,0) ?

Will really appreciate if answer is supported by explanation.

1 - x / |x| < x This would mean that -1 < x < 0 & 0 < x <infinite Thus 1 is insufficient

2 - |x| > x - This would mean that negative infinite values < x < 0 This is also not sufficient.

Combining 1 & 2 - the overlapping region is -1 < x < 0

We can conclude that |x| < 1

So C

Solving the Question is not much of a problem as deciding whether our solved range: \(-1 < x < 0\) is SUFFICIENT to answer the asked range: \(-1 < x < 1\)

I need to understand that: Is our answer sufficient to conclude that YES x lies between (-1,1) even though our solution was that x lies between (-1,0) ?

The question asks whether -1 < x< 1. We got that -1 < x < 0. So, the answer is YES: x is definitely from the range (-1, 1).
_________________

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x|< x [#permalink]

Show Tags

24 Nov 2014, 11:26

The question is asking if -1 < x < 1

Statement 1) x/|x| < x Now if x + ve, x/|x| = 1 and if x is -ve x / |x| = -1 So essentially, the equation becomes +1 < x or -1 < -x or 1 > x (multiplying both sides by -ve) In two cases, one case says x > 1 and the other one says x < 1, hence Not sufficient.

Statement 2. |x| > x , this will only happen when x is -ve id x is -ve |x| can be > 1 or |x| can be < 1 or equal to 1. - Not sufficient.

Combining the two statements: x is -ve 1 > x hence sufficient. C)
_________________

Re: If x is not equal to 0, is |x| less than 1? (1) x/|x|< x [#permalink]

Show Tags

26 Nov 2014, 14:05

Bunuel wrote:

Hussain15 wrote:

If x is not equal to 0, is |x| less than 1?

(1) x/|x|< x

(2) |x| > x

Will really appreciate if answer is supported by explanation.

\(x\neq{0}\), is \(|x|<1\)? Which means is \(-1<x<1\)? (\(x\neq{0}\))

(1) \(\frac{x}{|x|}< x\) Two cases: A. \(x<0\) --> \(\frac{x}{-x}<x\) --> \(-1<x\). But remember that \(x<0\), so \(-1<x<0\)

B. \(x>0\) --> \(\frac{x}{x}<x\) --> \(1<x\).

Two ranges \(-1<x<0\) or \(x>1\). Which says that \(x\) either in the first range or in the second. Not sufficient to answer whether \(-1<x<1\). (For instance \(x\) can be \(-0.5\) or \(3\))

Second approach: look at the fraction \(\frac{x}{|x|}\) it can take only two values: 1 for \(x>0\) --> so we would have: \(1<x\); Or -1 for \(x<0\) --> so we would have: \(-1<x\) and as we considering the range for which \(x<0\) then completer range would be: \(-1<x<0\).

The same two ranges: \(-1<x<0\) or \(x>1\).

(2) \(|x| > x\). Well this basically tells that \(x\) is negative, as if x were positive or zero then \(|x|\) would be equal to \(x\). Only one range: \(x<0\), but still insufficient to say whether \(-1<x<1\). (For instance \(x\) can be \(-0.5\) or \(-10\))

Or two cases again: \(x<0\)--> \(-x>x\)--> \(x<0\). \(x>0\) --> \(x>x\): never correct.

(1)+(2) Intersection of the ranges from (1) and (2) is the range \(-1<x<0\) (\(x<0\) (from 2) and \(-1<x<0\) or \(x>1\) (from 1), hence \(-1<x<0\)). Every \(x\) from this range is definitely in the range \(-1<x<1\). Sufficient.

Answer: C.

Bunuel I'm very unclear about this. if x<0, then -x/|x| <-x (since x is negative in our scenario 1)...so where do I go from here? if i cut both -x's, I get 1/|x| > 1....so x>1....I can't understand how we got x>-1... If you could help, that'll be great. I tried plugging in for this question and got in right, but I've been trying to teach myself your conceptual way as I believe it is much better than plugging in.