Jul 19 08:00 AM PDT  09:00 AM PDT The Competition Continues  Game of Timers is a teambased competition based on solving GMAT questions to win epic prizes! Starting July 1st, compete to win prep materials while studying for GMAT! Registration is Open! Ends July 26th Jul 20 07:00 AM PDT  09:00 AM PDT Attend this webinar and master GMAT SC in 10 days by learning how meaning and logic can help you tackle 700+ level SC questions with ease. Jul 21 07:00 AM PDT  09:00 AM PDT Attend this webinar to learn a structured approach to solve 700+ Number Properties question in less than 2 minutes
Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 17 Jul 2010
Posts: 112

If x is the product of the positive integers from 1 to 8, in
[#permalink]
Show Tags
21 Jan 2013, 15:11
Question Stats:
78% (01:45) correct 22% (02:11) wrong based on 410 sessions
HideShow timer Statistics
If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m, and p are positive integers such that x = 2^i * 3^k * 5^m * 7^p, then i + k + m + p = A. 4 B. 7 C. 8 D. 11 E. 12 The OG Guide and MGMAT Guide both have different solutions, a bit long. Can someone tell me if I'm doing this incorrectly. If I'm plugging #'s in, I'm getting 2+3+4+5, = 14, but not all can be added, because not all are prime, and some numbers are repeated right, so if I take the sum of all primes in 2+3+4+5, without repeats I'll get 1+3+2+5, then I get 11? is this correct? I know 1 is not prime, and the first 2, and 4 share the same primes, so do I use 1 as a digit for 2, and use 2 as a prime # for 4? to end up with 1+3+2+5?
Official Answer and Stats are available only to registered users. Register/ Login.



Math Expert
Joined: 02 Sep 2009
Posts: 56272

Re: If x is the product of the positive integers from 1 to 8, in
[#permalink]
Show Tags
21 Jan 2013, 15:29
If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m, and p are positive integers such that x = 2^i * 3^k * 5^m * 7^p, then i + k + m + p =A. 4 B. 7 C. 8 D. 11 E. 12 Given that \(x=8!=2^7*3^2*5*7\). Hence, \(x=2^7*3^2*5^1*7^1=2^i * 3^k * 5^m * 7^p\), since i, k, m, and p are positive integers, then we can equate the exponents, so we have that \(i=7\), \(k=2\), \(m=1\), and \(p=1\). Therefore, \(i + k + m + p=7+2+1+1=11\). Answer: D. Hope it's clear.
_________________



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9442
Location: Pune, India

Re: If x is the product of the positive integers from 1 to 8, in
[#permalink]
Show Tags
21 Jan 2013, 20:56
laythesmack23 wrote: If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m, and p are positive integers such that x = 2^i * 3^k * 5^m * 7^p, then i + k + m + p = A. 4 B. 7 C. 8 D. 11 E. 12 The OG Guide and MGMAT Guide both have different solutions, a bit long. Can someone tell me if I'm doing this incorrectly. If I'm plugging #'s in, I'm getting 2+3+4+5, = 14, but not all can be added, because not all are prime, and some numbers are repeated right, so if I take the sum of all primes in 2+3+4+5, without repeats I'll get 1+3+2+5, then I get 11? is this correct? I know 1 is not prime, and the first 2, and 4 share the same primes, so do I use 1 as a digit for 2, and use 2 as a prime # for 4? to end up with 1+3+2+5? You cannot plug in numbers. You need to find the values of i, k, m and p. x = 1*2*3*4*5*6*7*8 = 8! \(x = 2^i*3^k*5^m*7^p\) To get the value of i, you need to find the number of 2s in x i.e. 8! (including the 2s you get in 4, 6 and 8). You can quickly count  one from 2, two from 4, one from 6 and three from 8 = total seven 2s are there in 8! To get the value of k, you need to find the number of 3s in 8!. There are two 3s in 8! (one from 3 and another from 6) It is easy to see that there is only one 5 and one 7 in 8!. \(x = 2^7*3^2*5^1*7^1\) So 7 + 2 + 1 + 1 = 11 Check this post for more on powers in factorials: http://www.veritasprep.com/blog/2011/06 ... actorials/
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



Director
Joined: 14 Dec 2012
Posts: 739
Location: India
Concentration: General Management, Operations
GPA: 3.6

Re: If x is the product of the positive integers from 1 to 8, in
[#permalink]
Show Tags
11 Aug 2013, 01:51
Stiv wrote: If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m and p are positive integers such that \(x = 2^i3^k5^m7^p\), then i + k + m + p = A 4 B 7 C 8 D 11 E 12 \(X= 1*2*3*4*5*6*7*8\) OR =\(1*2*3*2^2*5*(2*3)*7*2^3\) =\(1*2^7*3^2*5*7\) THEREFORE \(i + k + m + p = 7+2+1+1 = 11\) HENCE D
_________________
When you want to succeed as bad as you want to breathe ...then you will be successfull....
GIVE VALUE TO OFFICIAL QUESTIONS...
GMAT RCs VOCABULARY LIST: http://gmatclub.com/forum/vocabularylistforgmatreadingcomprehension155228.html learn AWA writing techniques while watching video : http://www.gmatprepnow.com/module/gmatanalyticalwritingassessment : http://www.youtube.com/watch?v=APt9ITygGss



Intern
Status: Preparation
Joined: 03 Apr 2012
Posts: 6
Location: India
GPA: 2.9

Re: If x is the product of the positive integers from 1 to 8, in
[#permalink]
Show Tags
11 Aug 2013, 02:40
If given any factorial .Then the maximum power of a prime number in that factorial can be obtained by using the following formula.
If given n! then the maximum power of a prime number p in that factorial is obtained by
[n/p] + [n/p^2] + [n/p^3] + ......
where [x] is a step function and gives the greatest integer less than or equal to X.
We have to continue the above formula until we get the value of some term zero.
For example take 8!.
To find the power of 2 in 8!. We apply this formula.
[8/2] + [8/4] + [8/8] + [8/16] +....
= 4 + 2 + 1 + 0 + 0 + ..... = 7



Target Test Prep Representative
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2823

Re: If x is the product of the positive integers from 1 to 8, in
[#permalink]
Show Tags
22 Nov 2017, 13:32
feellikequitting wrote: If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m, and p are positive integers such that x = 2^i * 3^k * 5^m * 7^p, then i + k + m + p =
A. 4 B. 7 C. 8 D. 11 E. 12 Let’s break 8! into prime factors: 8 x 7 x 6 x 5 x 4 x 3 x 2 2^3 x 7 x 2 x 3 x 5 x 2^2 x 3 x 2 2^7 x 3^2 x 5^1 x 7^1 We see that i = 7, k = 2, m = 1, and p = 1. Thus, i + k + m + p = 7 + 2 + 1 + 1 = 11. Answer: D
_________________
5star rated online GMAT quant self study course See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews
If you find one of my posts helpful, please take a moment to click on the "Kudos" button.



SVP
Joined: 26 Mar 2013
Posts: 2283

Re: If x is the product of the positive integers from 1 to 8, in
[#permalink]
Show Tags
20 Mar 2018, 16:24
feellikequitting wrote: If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m, and p are positive integers such that x = 2^i * 3^k * 5^m * 7^p, then i + k + m + p =
A. 4 B. 7 C. 8 D. 11 E. 12
x is the product of the positive integers from 1 to 8 = 8! = (1) (2) (3) (4) (5) (6) (7) (8) = 2^7 * 3^2 * 5^1 * 7^1 i + k + m + p = 7 + 2+ 1+1 = 11 Answer: D



CEO
Joined: 12 Sep 2015
Posts: 3848
Location: Canada

Re: If x is the product of the positive integers from 1 to 8, in
[#permalink]
Show Tags
30 Dec 2018, 10:44
feellikequitting wrote: If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m, and p are positive integers such that x = 2^i * 3^k * 5^m * 7^p, then i + k + m + p =
A. 4 B. 7 C. 8 D. 11 E. 12
GIVEN: x = (8)(7)(6)(5)(4)(3)(2)(1) Let's find the prime factorization of x by rewriting each value as the product of primes. We get: x = (2)(2)(2)(7)(2)(3)(5)(2)(2)(3)(2) Rearrange to get: x = (2)(2)(2)(2)(2)(2)(2)(3)(3)(5)(7) Rewrite as powers to get: \(x = (2^7)(3^2)(5^1)(7^1)\) We're told that \(x = (2^i)(3^k)(5^m)(7^p)\) This means: i = 7, k = 2, m = 1 and p = 1 So, i + k + m + p = 7 + 2 + 1 + 1 = 11 Answer: D Cheers, Brent
_________________
Test confidently with gmatprepnow.com




Re: If x is the product of the positive integers from 1 to 8, in
[#permalink]
30 Dec 2018, 10:44






