GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 24 Jan 2019, 04:51

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in January
PrevNext
SuMoTuWeThFrSa
303112345
6789101112
13141516171819
20212223242526
272829303112
Open Detailed Calendar
  • Key Strategies to Master GMAT SC

     January 26, 2019

     January 26, 2019

     07:00 AM PST

     09:00 AM PST

    Attend this webinar to learn how to leverage Meaning and Logic to solve the most challenging Sentence Correction Questions.
  • Free GMAT Number Properties Webinar

     January 27, 2019

     January 27, 2019

     07:00 AM PST

     09:00 AM PST

    Attend this webinar to learn a structured approach to solve 700+ Number Properties question in less than 2 minutes.

If x is the product of the positive integers from 1 to 8, in

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Manager
Manager
avatar
Joined: 17 Jul 2010
Posts: 112
If x is the product of the positive integers from 1 to 8, in  [#permalink]

Show Tags

New post 21 Jan 2013, 14:11
2
6
00:00
A
B
C
D
E

Difficulty:

  15% (low)

Question Stats:

78% (01:18) correct 22% (01:39) wrong based on 386 sessions

HideShow timer Statistics

If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m, and p are positive integers such that x = 2^i * 3^k * 5^m * 7^p, then i + k + m + p =

A. 4
B. 7
C. 8
D. 11
E. 12

The OG Guide and MGMAT Guide both have different solutions, a bit long. Can someone tell me if I'm doing this incorrectly.

If I'm plugging #'s in, I'm getting 2+3+4+5, = 14, but not all can be added, because not all are prime, and some numbers are repeated right, so if I take the sum of all primes in 2+3+4+5, without repeats I'll get 1+3+2+5, then I get 11? is this correct? I know 1 is not prime, and the first 2, and 4 share the same primes, so do I use 1 as a digit for 2, and use 2 as a prime # for 4? to end up with 1+3+2+5?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 52463
Re: If x is the product of the positive integers from 1 to 8, in  [#permalink]

Show Tags

New post 21 Jan 2013, 14:29
1
2
If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m, and p are positive integers such that x = 2^i * 3^k * 5^m * 7^p, then i + k + m + p =

A. 4
B. 7
C. 8
D. 11
E. 12

Given that \(x=8!=2^7*3^2*5*7\). Hence, \(x=2^7*3^2*5^1*7^1=2^i * 3^k * 5^m * 7^p\), since i, k, m, and p are positive integers, then we can equate the exponents, so we have that \(i=7\), \(k=2\), \(m=1\), and \(p=1\).

Therefore, \(i + k + m + p=7+2+1+1=11\).

Answer: D.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Veritas Prep GMAT Instructor
User avatar
D
Joined: 16 Oct 2010
Posts: 8811
Location: Pune, India
Re: If x is the product of the positive integers from 1 to 8, in  [#permalink]

Show Tags

New post 21 Jan 2013, 19:56
3
1
laythesmack23 wrote:
If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m, and p are positive integers such that x = 2^i * 3^k * 5^m * 7^p, then i + k + m + p =

A. 4
B. 7
C. 8
D. 11
E. 12

The OG Guide and MGMAT Guide both have different solutions, a bit long. Can someone tell me if I'm doing this incorrectly.

If I'm plugging #'s in, I'm getting 2+3+4+5, = 14, but not all can be added, because not all are prime, and some numbers are repeated right, so if I take the sum of all primes in 2+3+4+5, without repeats I'll get 1+3+2+5, then I get 11? is this correct? I know 1 is not prime, and the first 2, and 4 share the same primes, so do I use 1 as a digit for 2, and use 2 as a prime # for 4? to end up with 1+3+2+5?


You cannot plug in numbers. You need to find the values of i, k, m and p.

x = 1*2*3*4*5*6*7*8 = 8!

\(x = 2^i*3^k*5^m*7^p\)

To get the value of i, you need to find the number of 2s in x i.e. 8! (including the 2s you get in 4, 6 and 8). You can quickly count - one from 2, two from 4, one from 6 and three from 8 = total seven 2s are there in 8!

To get the value of k, you need to find the number of 3s in 8!. There are two 3s in 8! (one from 3 and another from 6)
It is easy to see that there is only one 5 and one 7 in 8!.

\(x = 2^7*3^2*5^1*7^1\)

So 7 + 2 + 1 + 1 = 11

Check this post for more on powers in factorials: http://www.veritasprep.com/blog/2011/06 ... actorials/
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Director
Director
User avatar
Joined: 14 Dec 2012
Posts: 748
Location: India
Concentration: General Management, Operations
GMAT 1: 700 Q50 V34
GPA: 3.6
GMAT ToolKit User
Re: If x is the product of the positive integers from 1 to 8, in  [#permalink]

Show Tags

New post 11 Aug 2013, 00:51
Stiv wrote:
If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m and p are positive integers such that \(x = 2^i3^k5^m7^p\), then i + k + m + p =
A 4
B 7
C 8
D 11
E 12


\(X= 1*2*3*4*5*6*7*8\) OR =\(1*2*3*2^2*5*(2*3)*7*2^3\) =\(1*2^7*3^2*5*7\)
THEREFORE \(i + k + m + p = 7+2+1+1 = 11\)

HENCE D
_________________

When you want to succeed as bad as you want to breathe ...then you will be successfull....

GIVE VALUE TO OFFICIAL QUESTIONS...



GMAT RCs VOCABULARY LIST: http://gmatclub.com/forum/vocabulary-list-for-gmat-reading-comprehension-155228.html
learn AWA writing techniques while watching video : http://www.gmatprepnow.com/module/gmat-analytical-writing-assessment
: http://www.youtube.com/watch?v=APt9ITygGss

Intern
Intern
avatar
Status: Preparation
Joined: 03 Apr 2012
Posts: 6
Location: India
GMAT 1: 700 Q50 V34
GPA: 2.9
Re: If x is the product of the positive integers from 1 to 8, in  [#permalink]

Show Tags

New post 11 Aug 2013, 01:40
If given any factorial .Then the maximum power of a prime number in that factorial can be obtained by using the following formula.

If given n! then the maximum power of a prime number p in that factorial is obtained by

[n/p] + [n/p^2] + [n/p^3] + ......

where [x] is a step function and gives the greatest integer less than or equal to X.

We have to continue the above formula until we get the value of some term zero.

For example take 8!.

To find the power of 2 in 8!. We apply this formula.

[8/2] + [8/4] + [8/8] + [8/16] +....

= 4 + 2 + 1 + 0 + 0 + ..... = 7
Target Test Prep Representative
User avatar
G
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2830
Re: If x is the product of the positive integers from 1 to 8, in  [#permalink]

Show Tags

New post 22 Nov 2017, 12:32
1
feellikequitting wrote:
If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m, and p are positive integers such that x = 2^i * 3^k * 5^m * 7^p, then i + k + m + p =

A. 4
B. 7
C. 8
D. 11
E. 12


Let’s break 8! into prime factors:

8 x 7 x 6 x 5 x 4 x 3 x 2

2^3 x 7 x 2 x 3 x 5 x 2^2 x 3 x 2

2^7 x 3^2 x 5^1 x 7^1

We see that i = 7, k = 2, m = 1, and p = 1.

Thus, i + k + m + p = 7 + 2 + 1 + 1 = 11.

Answer: D
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

SVP
SVP
User avatar
D
Joined: 26 Mar 2013
Posts: 2012
Reviews Badge CAT Tests
Re: If x is the product of the positive integers from 1 to 8, in  [#permalink]

Show Tags

New post 20 Mar 2018, 15:24
feellikequitting wrote:
If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m, and p are positive integers such that x = 2^i * 3^k * 5^m * 7^p, then i + k + m + p =

A. 4
B. 7
C. 8
D. 11
E. 12


x is the product of the positive integers from 1 to 8 = 8! = (1) (2) (3) (4) (5) (6) (7) (8) = 2^7 * 3^2 * 5^1 * 7^1

i + k + m + p = 7 + 2+ 1+1 = 11

Answer: D
CEO
CEO
User avatar
D
Joined: 11 Sep 2015
Posts: 3360
Location: Canada
Re: If x is the product of the positive integers from 1 to 8, in  [#permalink]

Show Tags

New post 30 Dec 2018, 09:44
Top Contributor
feellikequitting wrote:
If x is the product of the positive integers from 1 to 8, inclusive, and if i, k, m, and p are positive integers such that x = 2^i * 3^k * 5^m * 7^p, then i + k + m + p =

A. 4
B. 7
C. 8
D. 11
E. 12


GIVEN: x = (8)(7)(6)(5)(4)(3)(2)(1)
Let's find the prime factorization of x by rewriting each value as the product of primes.
We get: x = (2)(2)(2)(7)(2)(3)(5)(2)(2)(3)(2)
Rearrange to get: x = (2)(2)(2)(2)(2)(2)(2)(3)(3)(5)(7)
Rewrite as powers to get: \(x = (2^7)(3^2)(5^1)(7^1)\)

We're told that \(x = (2^i)(3^k)(5^m)(7^p)\)

This means: i = 7, k = 2, m = 1 and p = 1

So, i + k + m + p = 7 + 2 + 1 + 1 = 11

Answer: D

Cheers,
Brent
_________________

Test confidently with gmatprepnow.com
Image

GMAT Club Bot
Re: If x is the product of the positive integers from 1 to 8, in &nbs [#permalink] 30 Dec 2018, 09:44
Display posts from previous: Sort by

If x is the product of the positive integers from 1 to 8, in

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.