GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 19 Sep 2019, 04:36

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# If x & y are integers, how many solution pairs (x,y) satisfy the equat

Author Message
TAGS:

### Hide Tags

SVP
Joined: 03 Jun 2019
Posts: 1524
Location: India
If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

### Show Tags

04 Aug 2019, 10:36
11
00:00

Difficulty:

95% (hard)

Question Stats:

16% (01:44) correct 84% (02:34) wrong based on 92 sessions

### HideShow timer Statistics

If x & y are integers, how many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

A. 48
B. 24
C. 72
D. 144
E. 36

_________________
"Success is not final; failure is not fatal: It is the courage to continue that counts."

Please provide kudos if you like my post. Kudos encourage active discussions.

My GMAT Resources: -

Efficient Learning
All you need to know about GMAT quant

Tele: +91-11-40396815
Mobile : +91-9910661622
E-mail : kinshook.chaturvedi@gmail.com
GMAT Club Legend
Joined: 18 Aug 2017
Posts: 4740
Location: India
Concentration: Sustainability, Marketing
GPA: 4
WE: Marketing (Energy and Utilities)
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

### Show Tags

05 Aug 2019, 13:20
5
1
Kinshook wrote:
If x & y are integers, how many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

A. 48
B. 24
C. 72
D. 144
E. 36

giving a try ;
total factors of 72 ; 2^3*3^2 ; 4*3 ; 12
so answer has to be multiple of 12
from given expression (|x-2|-12)(|y+4|-36)=72
for values withing modulus we can get 4 pairs i.e x,y ( +,+) ( -,-) (+,-) (-,+)
also value either of x or y is 0 so ( 0,26) & ( 12,0)
so total possible pairs 6 * factor ; 6*12 ; 72
IMO C
_________________
If you liked my solution then please give Kudos. Kudos encourage active discussions.
##### General Discussion
SVP
Joined: 03 Jun 2019
Posts: 1524
Location: India
If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

### Show Tags

07 Aug 2019, 08:12
1
Kinshook wrote:
If x & y are integers, how many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

A. 48
B. 24
C. 72
D. 144
E. 36

Given: x & y are integers
Asked: How many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

$$72 = 2^3*3^2$$
72 has 4*3 = 12 factors
Factors of 72 = {1,2,3,4,6,8,9,12,18,24,36,72}

If x & y are positive integers, we will have 12 cases

72=1*72
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=1 => |x-2|=12+1=13 =>x=2+-13 => x=15 or x=-11
|y+4|-36=72 =>|y+4|=36+72=108 =>y=-4+-108 => y=112 or y=-104
This case will give 4 ordered pairs = (15,112),(-11,112),(15,-104) & (-11,-104)

72=2*36
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=2 => |x-2|=12+2=14 =>x=2+-14 => x=16 or x=-12
|y+4|-36=36 =>|y+4|=36+36=72 =>y=-4+-72 => y=-76 or y=68
This case will give 4 ordered pairs = (16,68),(-12,-76),(16,68) & (-12,-76)

72=3*24
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=3 =>|x-2|=12+3=15 => x=2+-15 => x=17 or x=-13
|y+4|-36=24 =>|y+4|=36+24=60 =>y=-4+-60 => y=-64 or y=56
This case will give 4 ordered pairs = (17,56),(-13,-64),(17,56) & (-13,-64)

72=4*18
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=4 => |x-2|=12+4=16 => x=2+-16 => x=18 or x=-14
|y+4|-36=18 =>|y+4|=36+18= 54 => y=-4+-54 => y=-58 or y=50
This case will give 4 ordered pairs = (18,50),(-14,-58),(18,50) & (-14,-58)

72=6*12
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=6 => |x-2|=12+6=18 => x=2+-18 => x=20 or x=-16
|y+4|-36=12 =>|y+4|=36+12= 48 => y=-4+-48 => y=-52 or y=44
This case will give 4 ordered pairs = (20,44),(-16,-52),(20,44) & (-16,-52)

72=8*9
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=8 => |x-2|=12+8=20 => x=2+-20 => x=22 or x=-18
|y+4|-36=9 =>|y+4|=36+9= 45 => y=-4+-45 => y=-49 or y=41
This case will give 4 ordered pairs = (22,41),(-18,-49),(22,41) & (-18,-49)

72=9*8
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=9 => |x-2|=12+9=21 => x=2+-21 => x=23 or x=-19
|y+4|-36=8 =>|y+4|=36+8= 44 => y=-4+-44 => y=-48 or y=40
This case will give 4 ordered pairs = (23,40),(-19,-48),(23,40) & (-19,-48)

72=12*6
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=12 => |x-2|=12+12=24 => x=2+-24 => x=26 or x=-22
|y+4|-36=6 =>|y+4|=36+6= 42 => y=-4+-42 => y=-46 or y=38
This case will give 4 ordered pairs = (26,38),(-22,-46),(26,38) & (-22,-46)

72=18*4
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=18 => |x-2|=12+18=30 => x=2+-30 => x=32 or x=-28
|y+4|-36=4 =>|y+4|=36+4= 40 => y=-4+-40 => y=-44 or y=36
This case will give 4 ordered pairs = (32,36),(-28,-44),(32,36) & (-28,-44)

72=24*3
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=24 => |x-2|=12+24=36 => x=2+-36 => x=38 or x=-34
|y+4|-36=3 =>|y+4|=36+3= 39 => y=-4+-39 => y=-43 or y=35
This case will give 4 ordered pairs = (38,35),(-34,-43),(38,35) & (-34,-43)

72=36*2
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=36 => |x-2|=12+36=48 => x=2+-48 => x=50 or x=-46
|y+4|-36=2 =>|y+4|=36+2= 38 => y=-4+-38 => y=-42 or y=34
This case will give 4 ordered pairs = (50,34),(-46,-46),(50,34) & (-46,-46)

72=72*1
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=72 => |x-2|=12+72=84 => x=2+-84 => x=86 or x=-82
|y+4|-36=1 =>|y+4|=36+1= 37 => y=-4+-37 => y=-41 or y=33
This case will give 4 ordered pairs = (86,33),(-82,-41),(86,33) & (-82,-41)

These 12 cases when x & y are positive integers will give 12*4 = 48 ordered pairs

Now let us consider negative integer cases:-

72=(-1)*(-72)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-1 => x=2+-11 => x=13 or x=-9
|y+4|-36=-72 => |y+4| = 36-72 = -36 => NOT FEASIBLE
This case will give 0 ordered pairs

72=(-2)*(-36)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-2 => x=2+-10 => x=12 or x=-8
|y+4|-36=-36 => |y+4| = 0 => y = -4
This case will give 2 ordered pairs (12,-4) & (-8,-4)
This case will give 2 ordered pairs

72=(-3)*(-24)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-3 => x=2+-9 => x=11 or x=-7
|y+4|-36=-24 => |y+4| = 36-24 = 12 => y = -4+-12 => y=8 or y=-16
This case will give 4 ordered pairs (11,8),(11,-16),(-7,8) & (-7,-16)
This case will give 4 ordered pairs

72=(-4)*(-18)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-4 => x=2+-8 => x=10 or x=-6
|y+4|-36=-18=> |y+4| = 36-18 = 18 => y = -4+-18 => y=14 or y=-22
This case will give 4 ordered pairs

72=(-6)*(-12)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-6 => x=2+-6 => x=8 or x=-4
|y+4|-36=-12=> |y+4| = 36-12 = 24 => y = -4+-24 => y=20 or y=-28
This case will give 4 ordered pairs

72=(-8)*(-9)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-8 => x=2+-4 => x=6 or x=-2
|y+4|-36=-9=> |y+4| = 36-9 = 27 => y = -4+-27 => y=23 or y=-31
This case will give 4 ordered pairs

72=(-9)*(-8)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-9 => |x-2|= 12-9=3 => x=2+-3 => x=5 or x=-1
|y+4|-36=-8=> |y+4| = 36-8 = 28 => y = -4+-28 => y=24 or y=-32
This case will give 4 ordered pairs

72=(-12)*(-6)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-12 => |x-2|= 12-12=0 => x= 2
|y+4|-36=-6=> |y+4| = 36-6 = 30 => y = -4+-30 => y=26 or y=-34
This case will give 2 ordered pairs

72=(-18)*(-4)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-18 => |x-2|= 12-18=-6 => NOT FEASIBLE
|y+4|-36=-4=> |y+4| = 36-4 = 32 => y = -4+-32 => y=28 or y=-36
This case will give 0 ordered pairs

72=(-24)*(-3)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-24 => |x-2|= 12-24=-12 => NOT FEASIBLE
|y+4|-36=-3=> |y+4| = 36-3 = 33 => y = -4+-33 => y=29 or y=-37
This case will give 0 ordered pairs

72=(-36)*(-2)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-36 => |x-2|= 12-36=-24 => NOT FEASIBLE
|y+4|-36=-2=> |y+4| = 36-2 = 34 => y = -4+-34 => y=30 or y=-38
This case will give 0 ordered pairs

72=(-72)*(-1)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-72 => |x-2|= 12-72=-60 => NOT FEASIBLE
|y+4|-36=-1=> |y+4| = 36-1 = 35 => y = -4+-35 => y=31 or y=-39
This case will give 0 ordered pairs

Total ordered pairs for negative integers = 2+ 5*4 +2 = 24

Total integer ordered pairs = 48 + 24 = 72

IMO A
_________________
"Success is not final; failure is not fatal: It is the courage to continue that counts."

Please provide kudos if you like my post. Kudos encourage active discussions.

My GMAT Resources: -

Efficient Learning
All you need to know about GMAT quant

Tele: +91-11-40396815
Mobile : +91-9910661622
E-mail : kinshook.chaturvedi@gmail.com
Intern
Status: Preparing for GMAT
Joined: 09 May 2019
Posts: 1
WE: Information Technology (Consulting)
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

### Show Tags

10 Aug 2019, 11:13
1
Kinshook wrote:
Kinshook wrote:
If x & y are integers, how many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

A. 48
B. 24
C. 72
D. 144
E. 36

Given: x & y are integers
Asked: How many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

$$72 = 2^3*3^2$$
72 has 4*3 = 12 factors
Factors of 72 = {1,2,3,4,6,8,9,12,18,24,36,72}

If x & y are positive integers, we will have 12 cases

72=1*72
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=1 => |x-2|=12+1=13 =>x=2+-13 => x=15 or x=-11
|y+4|-36=72 =>|y+4|=36+72=108 =>y=-4+-108 => y=112 or y=-104
This case will give 4 ordered pairs = (15,112),(-11,112),(15,-104) & (-11,-104)

72=2*36
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=2 => |x-2|=12+2=14 =>x=2+-14 => x=16 or x=-12
|y+4|-36=36 =>|y+4|=36+36=72 =>y=-4+-72 => y=-76 or y=68
This case will give 4 ordered pairs = (16,68),(-12,-76),(16,68) & (-12,-76)

72=3*24
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=3 =>|x-2|=12+3=15 => x=2+-15 => x=17 or x=-13
|y+4|-36=24 =>|y+4|=36+24=60 =>y=-4+-60 => y=-64 or y=56
This case will give 4 ordered pairs = (17,56),(-13,-64),(17,56) & (-13,-64)

72=4*18
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=4 => |x-2|=12+4=16 => x=2+-16 => x=18 or x=-14
|y+4|-36=18 =>|y+4|=36+18= 54 => y=-4+-54 => y=-58 or y=50
This case will give 4 ordered pairs = (18,50),(-14,-58),(18,50) & (-14,-58)

72=6*12
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=6 => |x-2|=12+6=18 => x=2+-18 => x=20 or x=-16
|y+4|-36=12 =>|y+4|=36+12= 48 => y=-4+-48 => y=-52 or y=44
This case will give 4 ordered pairs = (20,44),(-16,-52),(20,44) & (-16,-52)

72=8*9
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=8 => |x-2|=12+8=20 => x=2+-20 => x=22 or x=-18
|y+4|-36=9 =>|y+4|=36+9= 45 => y=-4+-45 => y=-49 or y=41
This case will give 4 ordered pairs = (22,41),(-18,-49),(22,41) & (-18,-49)

72=9*8
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=9 => |x-2|=12+9=21 => x=2+-21 => x=23 or x=-19
|y+4|-36=8 =>|y+4|=36+8= 44 => y=-4+-44 => y=-48 or y=40
This case will give 4 ordered pairs = (23,40),(-19,-48),(23,40) & (-19,-48)

72=12*6
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=12 => |x-2|=12+12=24 => x=2+-24 => x=26 or x=-22
|y+4|-36=6 =>|y+4|=36+6= 42 => y=-4+-42 => y=-46 or y=38
This case will give 4 ordered pairs = (26,38),(-22,-46),(26,38) & (-22,-46)

72=18*4
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=18 => |x-2|=12+18=30 => x=2+-30 => x=32 or x=-28
|y+4|-36=4 =>|y+4|=36+4= 40 => y=-4+-40 => y=-44 or y=36
This case will give 4 ordered pairs = (32,36),(-28,-44),(32,36) & (-28,-44)

72=24*3
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=24 => |x-2|=12+24=36 => x=2+-36 => x=38 or x=-34
|y+4|-36=3 =>|y+4|=36+3= 39 => y=-4+-39 => y=-43 or y=35
This case will give 4 ordered pairs = (38,35),(-34,-43),(38,35) & (-34,-43)

72=36*2
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=36 => |x-2|=12+36=48 => x=2+-48 => x=50 or x=-46
|y+4|-36=2 =>|y+4|=36+2= 38 => y=-4+-38 => y=-42 or y=34
This case will give 4 ordered pairs = (50,34),(-46,-46),(50,34) & (-46,-46)

72=72*1
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=72 => |x-2|=12+72=84 => x=2+-84 => x=86 or x=-82
|y+4|-36=1 =>|y+4|=36+1= 37 => y=-4+-37 => y=-41 or y=33
This case will give 4 ordered pairs = (86,33),(-82,-41),(86,33) & (-82,-41)

These 12 cases when x & y are positive integers will give 12*4 = 48 ordered pairs

Now let us consider negative integer cases:-

72=(-1)*(-72)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-1 => x=2+-11 => x=13 or x=-9
|y+4|-36=-72 => |y+4| = 36-72 = -36 => NOT FEASIBLE
This case will give 0 ordered pairs

72=(-2)*(-36)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-2 => x=2+-10 => x=12 or x=-8
|y+4|-36=-36 => |y+4| = 0 => y = -4
This case will give 2 ordered pairs (12,-4) & (-8,-4)
This case will give 2 ordered pairs

72=(-3)*(-24)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-3 => x=2+-9 => x=11 or x=-7
|y+4|-36=-24 => |y+4| = 36-24 = 12 => y = -4+-12 => y=8 or y=-16
This case will give 4 ordered pairs (11,8),(11,-16),(-7,8) & (-7,-16)
This case will give 4 ordered pairs

72=(-4)*(-18)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-4 => x=2+-8 => x=10 or x=-6
|y+4|-36=-18=> |y+4| = 36-18 = 18 => y = -4+-18 => y=14 or y=-22
This case will give 4 ordered pairs

72=(-6)*(-12)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-6 => x=2+-6 => x=8 or x=-4
|y+4|-36=-12=> |y+4| = 36-12 = 24 => y = -4+-24 => y=20 or y=-28
This case will give 4 ordered pairs

72=(-8)*(-9)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-8 => x=2+-4 => x=6 or x=-2
|y+4|-36=-9=> |y+4| = 36-9 = 27 => y = -4+-27 => y=23 or y=-31
This case will give 4 ordered pairs

72=(-9)*(-8)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-9 => |x-2|= 12-9=3 => x=2+-3 => x=5 or x=-1
|y+4|-36=-8=> |y+4| = 36-8 = 28 => y = -4+-28 => y=24 or y=-32
This case will give 4 ordered pairs

72=(-12)*(-6)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-12 => |x-2|= 12-12=0 => x= 2
|y+4|-36=-6=> |y+4| = 36-6 = 30 => y = -4+-30 => y=26 or y=-34
This case will give 2 ordered pairs

72=(-18)*(-4)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-18 => |x-2|= 12-18=-6 => NOT FEASIBLE
|y+4|-36=-4=> |y+4| = 36-4 = 32 => y = -4+-32 => y=28 or y=-36
This case will give 0 ordered pairs

72=(-24)*(-3)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-24 => |x-2|= 12-24=-12 => NOT FEASIBLE
|y+4|-36=-3=> |y+4| = 36-3 = 33 => y = -4+-33 => y=29 or y=-37
This case will give 0 ordered pairs

72=(-36)*(-2)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-36 => |x-2|= 12-36=-24 => NOT FEASIBLE
|y+4|-36=-2=> |y+4| = 36-2 = 34 => y = -4+-34 => y=30 or y=-38
This case will give 0 ordered pairs

72=(-72)*(-1)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-72 => |x-2|= 12-72=-60 => NOT FEASIBLE
|y+4|-36=-1=> |y+4| = 36-1 = 35 => y = -4+-35 => y=31 or y=-39
This case will give 0 ordered pairs

Total ordered pairs for negative integers = 2+ 5*4 +2 = 24

Total integer ordered pairs = 48 + 24 = 72

IMO A

Is there a shorter way to attempt this question?
Intern
Joined: 11 Jun 2019
Posts: 29
Location: India
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

### Show Tags

05 Aug 2019, 18:19
@archit3110- Can you help me understand the last part where you mentioned value of either X or Y can be zero.
Intern
Joined: 21 Mar 2019
Posts: 19
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

### Show Tags

06 Aug 2019, 00:41
Can someone explain me how to tackle this one please ?
Intern
Joined: 12 Jan 2019
Posts: 28
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

### Show Tags

07 Aug 2019, 02:59
1
Bunuel wrote:
_______________________
BUMPING FOR DISCUSSION.

Can you help with the explanation?? Thanks in advance
Intern
Joined: 18 Mar 2019
Posts: 30
Location: India
WE: Operations (Manufacturing)
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

### Show Tags

07 Aug 2019, 06:35
72 = {1,2,3,4,6,8,9,12,18,24,72}

A x B = 72

Case 1

A=1 B=72
Then (x,y) will be (13,104),(13,-112),(-11,104) and (-11,-112)

and so on for A=72 and B=1

Total such 12 A B pair cases will be there

And 4 integral pair will come as a result of each A B pair

Hence 48 is the answer in my opinion.

Posted from my mobile device
SVP
Joined: 03 Jun 2019
Posts: 1524
Location: India
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

### Show Tags

07 Aug 2019, 07:34
kshitijhbti wrote:
72 = {1,2,3,4,6,8,9,12,18,24,72}

A x B = 72

Case 1

A=1 B=72
Then (x,y) will be (13,104),(13,-112),(-11,104) and (-11,-112)

and so on for A=72 and B=1

Total such 12 A B pair cases will be there

And 4 integral pair will come as a result of each A B pair

Hence 48 is the answer in my opinion.

Posted from my mobile device

A very good attempt but x & y may be negative integers.
Therefore, consider that case.
_________________
"Success is not final; failure is not fatal: It is the courage to continue that counts."

Please provide kudos if you like my post. Kudos encourage active discussions.

My GMAT Resources: -

Efficient Learning
All you need to know about GMAT quant

Tele: +91-11-40396815
Mobile : +91-9910661622
E-mail : kinshook.chaturvedi@gmail.com
Intern
Joined: 08 Aug 2018
Posts: 27
Location: India
Concentration: General Management, Finance
GMAT 1: 720 Q51 V36
If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

### Show Tags

10 Aug 2019, 12:02
Kinshook wrote:
Kinshook wrote:
If x & y are integers, how many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

A. 48
B. 24
C. 72
D. 144
E. 36

Given: x & y are integers
Asked: How many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

$$72 = 2^3*3^2$$
72 has 4*3 = 12 factors
Factors of 72 = {1,2,3,4,6,8,9,12,18,24,36,72}

If x & y are positive integers, we will have 12 cases

72=1*72
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=1 => |x-2|=12+1=13 =>x=2+-13 => x=15 or x=-11
|y+4|-36=72 =>|y+4|=36+72=108 =>y=-4+-108 => y=112 or y=-104
This case will give 4 ordered pairs = (15,112),(-11,112),(15,-104) & (-11,-104)

72=2*36
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=2 => |x-2|=12+2=14 =>x=2+-14 => x=16 or x=-12
|y+4|-36=36 =>|y+4|=36+36=72 =>y=-4+-72 => y=-76 or y=68
This case will give 4 ordered pairs = (16,68),(-12,-76),(16,68) & (-12,-76)

72=3*24
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=3 =>|x-2|=12+3=15 => x=2+-15 => x=17 or x=-13
|y+4|-36=24 =>|y+4|=36+24=60 =>y=-4+-60 => y=-64 or y=56
This case will give 4 ordered pairs = (17,56),(-13,-64),(17,56) & (-13,-64)

72=4*18
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=4 => |x-2|=12+4=16 => x=2+-16 => x=18 or x=-14
|y+4|-36=18 =>|y+4|=36+18= 54 => y=-4+-54 => y=-58 or y=50
This case will give 4 ordered pairs = (18,50),(-14,-58),(18,50) & (-14,-58)

72=6*12
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=6 => |x-2|=12+6=18 => x=2+-18 => x=20 or x=-16
|y+4|-36=12 =>|y+4|=36+12= 48 => y=-4+-48 => y=-52 or y=44
This case will give 4 ordered pairs = (20,44),(-16,-52),(20,44) & (-16,-52)

72=8*9
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=8 => |x-2|=12+8=20 => x=2+-20 => x=22 or x=-18
|y+4|-36=9 =>|y+4|=36+9= 45 => y=-4+-45 => y=-49 or y=41
This case will give 4 ordered pairs = (22,41),(-18,-49),(22,41) & (-18,-49)

72=9*8
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=9 => |x-2|=12+9=21 => x=2+-21 => x=23 or x=-19
|y+4|-36=8 =>|y+4|=36+8= 44 => y=-4+-44 => y=-48 or y=40
This case will give 4 ordered pairs = (23,40),(-19,-48),(23,40) & (-19,-48)

72=12*6
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=12 => |x-2|=12+12=24 => x=2+-24 => x=26 or x=-22
|y+4|-36=6 =>|y+4|=36+6= 42 => y=-4+-42 => y=-46 or y=38
This case will give 4 ordered pairs = (26,38),(-22,-46),(26,38) & (-22,-46)

72=18*4
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=18 => |x-2|=12+18=30 => x=2+-30 => x=32 or x=-28
|y+4|-36=4 =>|y+4|=36+4= 40 => y=-4+-40 => y=-44 or y=36
This case will give 4 ordered pairs = (32,36),(-28,-44),(32,36) & (-28,-44)

72=24*3
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=24 => |x-2|=12+24=36 => x=2+-36 => x=38 or x=-34
|y+4|-36=3 =>|y+4|=36+3= 39 => y=-4+-39 => y=-43 or y=35
This case will give 4 ordered pairs = (38,35),(-34,-43),(38,35) & (-34,-43)

72=36*2
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=36 => |x-2|=12+36=48 => x=2+-48 => x=50 or x=-46
|y+4|-36=2 =>|y+4|=36+2= 38 => y=-4+-38 => y=-42 or y=34
This case will give 4 ordered pairs = (50,34),(-46,-46),(50,34) & (-46,-46)

72=72*1
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=72 => |x-2|=12+72=84 => x=2+-84 => x=86 or x=-82
|y+4|-36=1 =>|y+4|=36+1= 37 => y=-4+-37 => y=-41 or y=33
This case will give 4 ordered pairs = (86,33),(-82,-41),(86,33) & (-82,-41)

These 12 cases when x & y are positive integers will give 12*4 = 48 ordered pairs

Now let us consider negative integer cases:-

72=(-1)*(-72)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-1 => x=2+-11 => x=13 or x=-9
|y+4|-36=-72 => |y+4| = 36-72 = -36 => NOT FEASIBLE
This case will give 0 ordered pairs

72=(-2)*(-36)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-2 => x=2+-10 => x=12 or x=-8
|y+4|-36=-36 => |y+4| = 0 => y = -4
This case will give 2 ordered pairs (12,-4) & (-8,-4)
This case will give 2 ordered pairs

72=(-3)*(-24)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-3 => x=2+-9 => x=11 or x=-7
|y+4|-36=-24 => |y+4| = 36-24 = 12 => y = -4+-12 => y=8 or y=-16
This case will give 4 ordered pairs (11,8),(11,-16),(-7,8) & (-7,-16)
This case will give 4 ordered pairs

72=(-4)*(-18)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-4 => x=2+-8 => x=10 or x=-6
|y+4|-36=-18=> |y+4| = 36-18 = 18 => y = -4+-18 => y=14 or y=-22
This case will give 4 ordered pairs

72=(-6)*(-12)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-6 => x=2+-6 => x=8 or x=-4
|y+4|-36=-12=> |y+4| = 36-12 = 24 => y = -4+-24 => y=20 or y=-28
This case will give 4 ordered pairs

72=(-8)*(-9)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-8 => x=2+-4 => x=6 or x=-2
|y+4|-36=-9=> |y+4| = 36-9 = 27 => y = -4+-27 => y=23 or y=-31
This case will give 4 ordered pairs

72=(-9)*(-8)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-9 => |x-2|= 12-9=3 => x=2+-3 => x=5 or x=-1
|y+4|-36=-8=> |y+4| = 36-8 = 28 => y = -4+-28 => y=24 or y=-32
This case will give 4 ordered pairs

72=(-12)*(-6)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-12 => |x-2|= 12-12=0 => x= 2
|y+4|-36=-6=> |y+4| = 36-6 = 30 => y = -4+-30 => y=26 or y=-34
This case will give 2 ordered pairs

72=(-18)*(-4)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-18 => |x-2|= 12-18=-6 => NOT FEASIBLE
|y+4|-36=-4=> |y+4| = 36-4 = 32 => y = -4+-32 => y=28 or y=-36
This case will give 0 ordered pairs

72=(-24)*(-3)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-24 => |x-2|= 12-24=-12 => NOT FEASIBLE
|y+4|-36=-3=> |y+4| = 36-3 = 33 => y = -4+-33 => y=29 or y=-37
This case will give 0 ordered pairs

72=(-36)*(-2)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-36 => |x-2|= 12-36=-24 => NOT FEASIBLE
|y+4|-36=-2=> |y+4| = 36-2 = 34 => y = -4+-34 => y=30 or y=-38
This case will give 0 ordered pairs

72=(-72)*(-1)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-72 => |x-2|= 12-72=-60 => NOT FEASIBLE
|y+4|-36=-1=> |y+4| = 36-1 = 35 => y = -4+-35 => y=31 or y=-39
This case will give 0 ordered pairs

Total ordered pairs for negative integers = 2+ 5*4 +2 = 24

Total integer ordered pairs = 48 + 24 = 72

IMO A

Bunuel how can this problem be solved faster?
SVP
Joined: 03 Jun 2019
Posts: 1524
Location: India
Re: If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

### Show Tags

10 Aug 2019, 17:30
devangpandey007 wrote:
Kinshook wrote:
Kinshook wrote:
If x & y are integers, how many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

A. 48
B. 24
C. 72
D. 144
E. 36

Given: x & y are integers
Asked: How many ordered pairs (x,y) satisfy the equation (|x-2|-12)(|y+4|-36)=72?

$$72 = 2^3*3^2$$
72 has 4*3 = 12 factors
Factors of 72 = {1,2,3,4,6,8,9,12,18,24,36,72}

If x & y are positive integers, we will have 12 cases

72=1*72
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=1 => |x-2|=12+1=13 =>x=2+-13 => x=15 or x=-11
|y+4|-36=72 =>|y+4|=36+72=108 =>y=-4+-108 => y=112 or y=-104
This case will give 4 ordered pairs = (15,112),(-11,112),(15,-104) & (-11,-104)

72=2*36
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=2 => |x-2|=12+2=14 =>x=2+-14 => x=16 or x=-12
|y+4|-36=36 =>|y+4|=36+36=72 =>y=-4+-72 => y=-76 or y=68
This case will give 4 ordered pairs = (16,68),(-12,-76),(16,68) & (-12,-76)

72=3*24
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=3 =>|x-2|=12+3=15 => x=2+-15 => x=17 or x=-13
|y+4|-36=24 =>|y+4|=36+24=60 =>y=-4+-60 => y=-64 or y=56
This case will give 4 ordered pairs = (17,56),(-13,-64),(17,56) & (-13,-64)

72=4*18
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=4 => |x-2|=12+4=16 => x=2+-16 => x=18 or x=-14
|y+4|-36=18 =>|y+4|=36+18= 54 => y=-4+-54 => y=-58 or y=50
This case will give 4 ordered pairs = (18,50),(-14,-58),(18,50) & (-14,-58)

72=6*12
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=6 => |x-2|=12+6=18 => x=2+-18 => x=20 or x=-16
|y+4|-36=12 =>|y+4|=36+12= 48 => y=-4+-48 => y=-52 or y=44
This case will give 4 ordered pairs = (20,44),(-16,-52),(20,44) & (-16,-52)

72=8*9
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=8 => |x-2|=12+8=20 => x=2+-20 => x=22 or x=-18
|y+4|-36=9 =>|y+4|=36+9= 45 => y=-4+-45 => y=-49 or y=41
This case will give 4 ordered pairs = (22,41),(-18,-49),(22,41) & (-18,-49)

72=9*8
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=9 => |x-2|=12+9=21 => x=2+-21 => x=23 or x=-19
|y+4|-36=8 =>|y+4|=36+8= 44 => y=-4+-44 => y=-48 or y=40
This case will give 4 ordered pairs = (23,40),(-19,-48),(23,40) & (-19,-48)

72=12*6
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=12 => |x-2|=12+12=24 => x=2+-24 => x=26 or x=-22
|y+4|-36=6 =>|y+4|=36+6= 42 => y=-4+-42 => y=-46 or y=38
This case will give 4 ordered pairs = (26,38),(-22,-46),(26,38) & (-22,-46)

72=18*4
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=18 => |x-2|=12+18=30 => x=2+-30 => x=32 or x=-28
|y+4|-36=4 =>|y+4|=36+4= 40 => y=-4+-40 => y=-44 or y=36
This case will give 4 ordered pairs = (32,36),(-28,-44),(32,36) & (-28,-44)

72=24*3
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=24 => |x-2|=12+24=36 => x=2+-36 => x=38 or x=-34
|y+4|-36=3 =>|y+4|=36+3= 39 => y=-4+-39 => y=-43 or y=35
This case will give 4 ordered pairs = (38,35),(-34,-43),(38,35) & (-34,-43)

72=36*2
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=36 => |x-2|=12+36=48 => x=2+-48 => x=50 or x=-46
|y+4|-36=2 =>|y+4|=36+2= 38 => y=-4+-38 => y=-42 or y=34
This case will give 4 ordered pairs = (50,34),(-46,-46),(50,34) & (-46,-46)

72=72*1
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=72 => |x-2|=12+72=84 => x=2+-84 => x=86 or x=-82
|y+4|-36=1 =>|y+4|=36+1= 37 => y=-4+-37 => y=-41 or y=33
This case will give 4 ordered pairs = (86,33),(-82,-41),(86,33) & (-82,-41)

These 12 cases when x & y are positive integers will give 12*4 = 48 ordered pairs

Now let us consider negative integer cases:-

72=(-1)*(-72)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-1 => x=2+-11 => x=13 or x=-9
|y+4|-36=-72 => |y+4| = 36-72 = -36 => NOT FEASIBLE
This case will give 0 ordered pairs

72=(-2)*(-36)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-2 => x=2+-10 => x=12 or x=-8
|y+4|-36=-36 => |y+4| = 0 => y = -4
This case will give 2 ordered pairs (12,-4) & (-8,-4)
This case will give 2 ordered pairs

72=(-3)*(-24)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-3 => x=2+-9 => x=11 or x=-7
|y+4|-36=-24 => |y+4| = 36-24 = 12 => y = -4+-12 => y=8 or y=-16
This case will give 4 ordered pairs (11,8),(11,-16),(-7,8) & (-7,-16)
This case will give 4 ordered pairs

72=(-4)*(-18)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-4 => x=2+-8 => x=10 or x=-6
|y+4|-36=-18=> |y+4| = 36-18 = 18 => y = -4+-18 => y=14 or y=-22
This case will give 4 ordered pairs

72=(-6)*(-12)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-6 => x=2+-6 => x=8 or x=-4
|y+4|-36=-12=> |y+4| = 36-12 = 24 => y = -4+-24 => y=20 or y=-28
This case will give 4 ordered pairs

72=(-8)*(-9)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-8 => x=2+-4 => x=6 or x=-2
|y+4|-36=-9=> |y+4| = 36-9 = 27 => y = -4+-27 => y=23 or y=-31
This case will give 4 ordered pairs

72=(-9)*(-8)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-9 => |x-2|= 12-9=3 => x=2+-3 => x=5 or x=-1
|y+4|-36=-8=> |y+4| = 36-8 = 28 => y = -4+-28 => y=24 or y=-32
This case will give 4 ordered pairs

72=(-12)*(-6)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-12 => |x-2|= 12-12=0 => x= 2
|y+4|-36=-6=> |y+4| = 36-6 = 30 => y = -4+-30 => y=26 or y=-34
This case will give 2 ordered pairs

72=(-18)*(-4)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-18 => |x-2|= 12-18=-6 => NOT FEASIBLE
|y+4|-36=-4=> |y+4| = 36-4 = 32 => y = -4+-32 => y=28 or y=-36
This case will give 0 ordered pairs

72=(-24)*(-3)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-24 => |x-2|= 12-24=-12 => NOT FEASIBLE
|y+4|-36=-3=> |y+4| = 36-3 = 33 => y = -4+-33 => y=29 or y=-37
This case will give 0 ordered pairs

72=(-36)*(-2)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-36 => |x-2|= 12-36=-24 => NOT FEASIBLE
|y+4|-36=-2=> |y+4| = 36-2 = 34 => y = -4+-34 => y=30 or y=-38
This case will give 0 ordered pairs

72=(-72)*(-1)
72= (|x-2|-12)(|y+4|-36)
|x-2|-12=-72 => |x-2|= 12-72=-60 => NOT FEASIBLE
|y+4|-36=-1=> |y+4| = 36-1 = 35 => y = -4+-35 => y=31 or y=-39
This case will give 0 ordered pairs

Total ordered pairs for negative integers = 2+ 5*4 +2 = 24

Total integer ordered pairs = 48 + 24 = 72

IMO A

Is there a shorter way to attempt this question?

You need to check values of modulus is positive for each case and need not solve final values of x and y.

Posted from my mobile device
_________________
"Success is not final; failure is not fatal: It is the courage to continue that counts."

Please provide kudos if you like my post. Kudos encourage active discussions.

My GMAT Resources: -

Efficient Learning
All you need to know about GMAT quant

Tele: +91-11-40396815
Mobile : +91-9910661622
E-mail : kinshook.chaturvedi@gmail.com
Intern
Joined: 11 Mar 2019
Posts: 1
If x & y are integers, how many solution pairs (x,y) satisfy the equat  [#permalink]

### Show Tags

20 Aug 2019, 09:23
First determine the number of factors of 72: 2^3*3^2 => (3+1)*(2+1)=12 factors
Then, use the chart below to determine the zones for positivity of negativity of combined modulus on the number line:
______region 1____ region 2_____region 3
______________-4________2_____________
x-2 ---------------------------0++++++++++
y+4 -------------0++++++++++++++++++

Since there are 3 regions, (x,y) couple can take 3 different set of values for a couple of positive factors of 72. So we have 3*12 possibilities of couples.
Finally , the factors of 72 can be both positive or both negative, so multiply the number of couples found for positive factors by 2 =>3*12*2=72 couple possibilities.

Can you help me to see if this reasoning is correct?
If x & y are integers, how many solution pairs (x,y) satisfy the equat   [#permalink] 20 Aug 2019, 09:23
Display posts from previous: Sort by