It is currently 17 Oct 2017, 03:08

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# In a certain school, the ratio of boys to girls is 5 to 13.

Author Message
TAGS:

### Hide Tags

Intern
Joined: 06 Apr 2012
Posts: 34

Kudos [?]: 34 [0], given: 48

In a certain school, the ratio of boys to girls is 5 to 13. [#permalink]

### Show Tags

24 Sep 2012, 04:12
00:00

Difficulty:

(N/A)

Question Stats:

88% (00:47) correct 12% (00:57) wrong based on 141 sessions

### HideShow timer Statistics

In a certain school, the ratio of boys to girls is 5 to 13. If there are 72 more girls than boys, how many boys are there?

A. 27
B. 36
C. 45
D. 72
E. 117

[Reveal] Spoiler:
This is a pretty simple problem, however I was looking for purely algebraic way(s) to solve it. For some reason have trouble expressing it properly, please help to set it up.
[Reveal] Spoiler: OA

Last edited by Bunuel on 24 Sep 2012, 04:17, edited 1 time in total.
Edited the question.

Kudos [?]: 34 [0], given: 48

Math Expert
Joined: 02 Sep 2009
Posts: 41871

Kudos [?]: 128512 [3], given: 12179

Re: In a certain school, the ratio of boys to girls is 5 to 13. [#permalink]

### Show Tags

24 Sep 2012, 04:19
3
KUDOS
Expert's post
ikokurin wrote:
This is a pretty simple problem, however I was looking for purely algebraic way(s) to solve it. For some reason have trouble expressing it properly, please help to set it up.

In a certain school, the ratio of boys to girls is 5 to 13. If there are 72 more girls than boys, how many boys are there?
A. 27
B. 36
C. 45
D. 72
E. 117

Given: $$\frac{b}{g}=\frac{5x}{13x}$$, for some positive integer $$x$$. So, the number of boys must be a multiple of 5. Only answer choice C fits.

Alternately you can write: $$5x+72=13x$$ --> $$x=9$$ --> $$boys=5x=5*9=45$$.

Hope it helps.
_________________

Kudos [?]: 128512 [3], given: 12179

Moderator
Joined: 01 Sep 2010
Posts: 3355

Kudos [?]: 9040 [1], given: 1152

Re: In a certain school, the ratio of boys to girls is 5 to 13. [#permalink]

### Show Tags

24 Sep 2012, 12:18
1
KUDOS
we know 5/13 and this is also equal to x/x+72. ---> 5x + 360 = 13x ---> x = 45.

Albeit, the Bunuel's approach is even more straight
_________________

Kudos [?]: 9040 [1], given: 1152

Intern
Joined: 02 Nov 2009
Posts: 42

Kudos [?]: 57 [1], given: 8

Location: India
Concentration: General Management, Technology
GMAT Date: 04-21-2013
GPA: 4
WE: Information Technology (Internet and New Media)
Re: In a certain school, the ratio of boys to girls is 5 to 13. [#permalink]

### Show Tags

24 Sep 2012, 14:05
1
KUDOS
The ratio of b to G is 5:13 and the other data point is G are more than boys by 72...
Looking at the ratio we can say that the 8(13-5) extra parts caused this diff of 72. so 1 part corresponds to 72/8=9 and so
5 parts correspond to 5*9 = 45.

PS: always double check with the answer if u r using this approach.
_________________

KPV

Kudos [?]: 57 [1], given: 8

Re: In a certain school, the ratio of boys to girls is 5 to 13.   [#permalink] 24 Sep 2012, 14:05
Display posts from previous: Sort by