GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 26 May 2020, 05:41

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

In a game, one player throws two fair, six-sided die at the

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

Intern
Joined: 14 Feb 2013
Posts: 25
Schools: Duke '16
In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

01 May 2013, 10:03
8
35
00:00

Difficulty:

95% (hard)

Question Stats:

41% (02:17) correct 59% (02:11) wrong based on 373 sessions

HideShow timer Statistics

In a game, one player throws two fair, six-sided die at the same time. If the player receives at least a five or a one on either die, that player wins. What is the probability that a player wins after playing the game once?

A. 1/3
B. 4/9
C. 5/9
D. 2/3
E. 3/4
Math Expert
Joined: 02 Sep 2009
Posts: 64134
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

02 May 2013, 03:24
18
5
karishmatandon wrote:
In a game, one player throws two fair, six-sided die at the same time. If the player receives at least a five or a one on either die, that player wins. What is the probability that a player wins after playing the game once?

A. 1/3
B. 4/9
C. 5/9
D. 2/3
E. 3/4

Probably the easiest approach would be to find the probability of the opposite event and subtract it from 1:

P(win) = 1- P(not win) = 1 - 4/6*4/6 = 5/9.

_________________
Director
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 998
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

01 May 2013, 10:41
10
8
We have 2 good (read five and one) possibilities ($$G$$) on 6 faces G=2/6 and 4 bad possibilities ($$B$$) on 6 faces B=4/6
The winning combinations are the ones with at least a $$G$$ in it so:
$$G,B$$
$$B,G$$
$$G,G$$

$$G,B$$ and $$B,G$$ have the same probability $$\frac{2}{6}*\frac{4}{6}=\frac{2}{9}$$ each
$$G,G$$ has a probability of $$\frac{2}{6}*\frac{2}{6}=\frac{1}{9}$$
Sum them up $$\frac{2}{9}+\frac{2}{9}+\frac{1}{9}=\frac{5}{9}$$
General Discussion
Intern
Joined: 26 Feb 2013
Posts: 49
Concentration: Strategy, General Management
GMAT 1: 660 Q50 V30
WE: Consulting (Telecommunications)
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

01 May 2013, 10:40
5
1
Option C.

the number of cases in which he can lose the game are when both the faces have neither of 5 or 1 or both. so the possible combinations are (2,2),(2,3),(2,4) (2,6) and 12 more with 3,4,6.

probability of loss = # loss cases/# total no of cases
= 16/36 or 4/9

hence probability of win = 1-p(loss). = 1-(4/9) = 5/9
Intern
Joined: 10 Mar 2012
Posts: 37
GMAT 1: 730 Q47 V44
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

06 May 2013, 10:03
4
I think the question should be re-worded. 'At least a five' sounds like >= 5. Therefore, my result was 1-(1/2*1/2) = 3/4
Director
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 998
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

05 May 2013, 05:43
3
skamal7 wrote:
WHy in both winning combination we are calculating for GG only once .
May be on first die 5 and second die one or on first die one and second die 5...These can combinations can also occur na? ..WHy we are not considering this scenario?

Hi skamal7,

Consider the following example that will explain better than any theoretical information.
You say that G,G should be counted twice, so the possible combinations are:

G,G=1/9
G,G=1/9
B,G=2/9
G,B=2/9
B,B=4/9
[ also if your method is correct B,B should be counted twice =4/9 ]

don't you see anything odd? The sum of the probability of each case is greater than 1! $$\frac{1+1+2+2+4}{9}=\frac{10}{9}$$
[ if you count B,B twice it becomes $$\frac{14}{9}$$ ]

Why does this happen?Let's look at the theory now
The formula to solve this problem is $$(nCk)p^k*q^{(n-k)}$$ where p=1/3 and q=2/3 and N are the dies and K are the good outcomes:

Case two good $$(2C2)(\frac{1}{3})^2(\frac{2}{3})^0=\frac{1}{9}$$
Case one good one bad $$(2C1)(\frac{1}{3})^1(\frac{2}{3})^1=\frac{4}{9}$$
Case two bad $$(2C0)(\frac{1}{3})^0(\frac{2}{3})^2=\frac{4}{9}$$

Tot sum = $$\frac{1+4+4}{9}=1$$

Hope it's clear now, let me know
Intern
Joined: 23 Apr 2013
Posts: 20
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

05 May 2013, 08:09
1
karishmatandon wrote:
In a game, one player throws two fair, six-sided die at the same time. If the player receives at least a five or a one on either die, that player wins. What is the probability that a player wins after playing the game once?

A. 1/3
B. 4/9
C. 5/9
D. 2/3
E. 3/4

Instead of trying to count the overlapping events and thereby complicating the probability calculation, we can simply calculate the probability of 'not winning' and subtract it from 1 to get the probability of 'winning'

Therefore required probability $$P = 1 - (\frac{4}{6})*(\frac{4}{6})$$

$$P = \frac{5}{9}$$

Correct option is C
Manager
Joined: 02 Sep 2012
Posts: 179
Location: United States
Concentration: Entrepreneurship, Finance
GMAT Date: 07-25-2013
GPA: 3.83
WE: Architecture (Computer Hardware)
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

05 May 2013, 08:19
1
Zarollu,
Unfortunately GMATCLUB doesn't allow me to reward you with more than 1 kudos .. Thanks for such an awesome explainanation
Intern
Joined: 25 Jun 2013
Posts: 11
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

30 Jul 2013, 13:47
1
I too got confused with the word "at least" I assumed that either a 1, 5 or 6 would constitute a win. Hmmm
EMPOWERgmat Instructor
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 16717
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

04 Dec 2015, 19:48
1
Hi whitehalo,

You 'double-counted' scenarios in which you roll a 1 or a 5 on BOTH dice.

1,1
1,5
5,1
5,5

Each of these options should be counted just ONCE, but your math counts them twice (thus, incorrectly raising your answer to a higher probability).

GMAT assassins aren't born, they're made,
Rich
_________________
Contact Rich at: Rich.C@empowergmat.com

The Course Used By GMAT Club Moderators To Earn 750+

souvik101990 Score: 760 Q50 V42 ★★★★★
ENGRTOMBA2018 Score: 750 Q49 V44 ★★★★★
Manager
Joined: 25 Jul 2018
Posts: 62
Location: Uzbekistan
Concentration: Finance, Organizational Behavior
GRE 1: Q168 V167
GPA: 3.85
WE: Project Management (Investment Banking)
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

09 Jan 2019, 00:09
1
kalcee wrote:
I too got confused with the word "at least" I assumed that either a 1, 5 or 6 would constitute a win. Hmmm

This one is not an Official gmat question; It would be great, if those math experts writing such low-end stems firstly could get trained in SC. I lost much time trying to solve this one before I finally realized that the thing asked is actually different from what is meant. There is a parallelism issue with ‘at least’ here. Ideally, ‘at least’ is a redundant phrase and instead the stem should read as ‘if the player receives a five or a one on either side...’ This writing will include all the cases meant by the original stem and exclude those without 5 or 1 on either side.
Manager
Joined: 02 Sep 2012
Posts: 179
Location: United States
Concentration: Entrepreneurship, Finance
GMAT Date: 07-25-2013
GPA: 3.83
WE: Architecture (Computer Hardware)
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

05 May 2013, 04:59
Zarrolou wrote:
We have 2 good (read five and one) possibilities ($$G$$) on 6 faces G=2/6 and 4 bad possibilities ($$B$$) on 6 faces B=4/6
The winning combinations are the ones with at least a $$G$$ in it so:
$$G,B$$
$$B,G$$
$$G,G$$

$$G,B$$ and $$B,G$$ have the same probability $$\frac{2}{6}*\frac{4}{6}=\frac{2}{9}$$ each
$$G,G$$ has a probability of $$\frac{2}{6}*\frac{2}{6}=\frac{1}{9}$$
Sum them up $$\frac{2}{9}+\frac{2}{9}+\frac{1}{9}=\frac{5}{9}$$

WHy in both winning combination we are calculating for GG only once .
May be on first die 5 and second die one or on first die one and second die 5...These can combinations can also occur na? ..WHy we are not considering this scenario?
Director
Status: Everyone is a leader. Just stop listening to others.
Joined: 22 Mar 2013
Posts: 685
Location: India
GPA: 3.51
WE: Information Technology (Computer Software)
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

30 Jul 2013, 10:51
I also got confused with this at least, i interpreted it as 5-x 6-x 1-x 5-1 6-1 vice-versa cases.
Manager
Joined: 24 Nov 2012
Posts: 142
Concentration: Sustainability, Entrepreneurship
GMAT 1: 770 Q50 V44
WE: Business Development (Internet and New Media)
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

03 Aug 2013, 03:10
dyaffe55 wrote:
I think the question should be re-worded. 'At least a five' sounds like >= 5. Therefore, my result was 1-(1/2*1/2) = 3/4

I made the same mistake as well... But for the condition above wouldnt the answer be 5/6?

Bunuel/Zarroulou could you confirm? If a win was 1,5,6 instead of 1 and 5?
_________________
You've been walking the ocean's edge, holding up your robes to keep them dry. You must dive naked under, and deeper under, a thousand times deeper! - Rumi

http://www.manhattangmat.com/blog/index.php/author/cbermanmanhattanprep-com/ - This is worth its weight in gold

Economist GMAT Test - 730, Q50, V41 Aug 9th, 2013
Manhattan GMAT Test - 670, Q45, V36 Aug 11th, 2013
Manhattan GMAT Test - 680, Q47, V36 Aug 17th, 2013
GmatPrep CAT 1 - 770, Q50, V44 Aug 24th, 2013
Manhattan GMAT Test - 690, Q45, V39 Aug 30th, 2013
Manhattan GMAT Test - 710, Q48, V39 Sep 13th, 2013
GmatPrep CAT 2 - 740, Q49, V41 Oct 6th, 2013

GMAT - 770, Q50, V44, Oct 7th, 2013
My Debrief - http://gmatclub.com/forum/from-the-ashes-thou-shall-rise-770-q-50-v-44-awa-5-ir-162299.html#p1284542
Director
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 998
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

03 Aug 2013, 03:15
Transcendentalist wrote:
dyaffe55 wrote:
I think the question should be re-worded. 'At least a five' sounds like >= 5. Therefore, my result was 1-(1/2*1/2) = 3/4

I made the same mistake as well... But for the condition above wouldnt the answer be 5/6?

Bunuel/Zarroulou could you confirm? If a win was 1,5,6 instead of 1 and 5?

If the question were "at least one five" (only five, and not also six to win), then yes the answer would be 1-5/6*5/6.
Manager
Joined: 24 Nov 2012
Posts: 142
Concentration: Sustainability, Entrepreneurship
GMAT 1: 770 Q50 V44
WE: Business Development (Internet and New Media)
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

03 Aug 2013, 03:52
I meant the condition for a win was at least a five (5 or 6) or 1 on either die...
_________________
You've been walking the ocean's edge, holding up your robes to keep them dry. You must dive naked under, and deeper under, a thousand times deeper! - Rumi

http://www.manhattangmat.com/blog/index.php/author/cbermanmanhattanprep-com/ - This is worth its weight in gold

Economist GMAT Test - 730, Q50, V41 Aug 9th, 2013
Manhattan GMAT Test - 670, Q45, V36 Aug 11th, 2013
Manhattan GMAT Test - 680, Q47, V36 Aug 17th, 2013
GmatPrep CAT 1 - 770, Q50, V44 Aug 24th, 2013
Manhattan GMAT Test - 690, Q45, V39 Aug 30th, 2013
Manhattan GMAT Test - 710, Q48, V39 Sep 13th, 2013
GmatPrep CAT 2 - 740, Q49, V41 Oct 6th, 2013

GMAT - 770, Q50, V44, Oct 7th, 2013
My Debrief - http://gmatclub.com/forum/from-the-ashes-thou-shall-rise-770-q-50-v-44-awa-5-ir-162299.html#p1284542
Director
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 998
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

03 Aug 2013, 04:21
Transcendentalist wrote:
I meant the condition for a win was at least a five (5 or 6) or 1 on either die...

Yes, with 5 or 6 the probability is 1-4/6*4/6
With only five the probability is 1-5/6*5/6
EMPOWERgmat Instructor
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 16717
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

20 Jun 2015, 17:10
Hi All,

This question can be solved with "brute force." Since you're rolling 2 dice, there aren't that many possible outcomes (just 36 in total), so you COULD just write them all down:

We're looking for the number of outcomes that include AT LEAST a 1 or a 5.

1,1
1,2
1,3
1,4
1,5
1,6

2,1
2,5

3,1
3,5

4,1
4,5

5,1
5,2
5,3
5,4
5,5
5,6

6,1
6,5

Total possibilities = 20

Probability of rolling at least a 1 or a 5 on two dice: 20/36 = 5/9

GMAT assassins aren't born, they're made,
Rich
_________________
Contact Rich at: Rich.C@empowergmat.com

The Course Used By GMAT Club Moderators To Earn 750+

souvik101990 Score: 760 Q50 V42 ★★★★★
ENGRTOMBA2018 Score: 750 Q49 V44 ★★★★★
Manager
Joined: 21 Jul 2013
Posts: 102
WE: Securities Sales and Trading (Commercial Banking)
In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

Updated on: 22 Jun 2016, 14:13
hi experts!

when I was solving this question, I merely added the probability of the two dices rolling a '5' or a '1' each; 2/6 + 2/6 = 2/3 since both are independent events.

which scenario did I overcount and when should I be solving the opposite events then subtracting it from 1? I've been solving over 50 probability questions and I'm still not getting a hang of it.

Originally posted by whitehalo on 04 Dec 2015, 17:06.
Last edited by whitehalo on 22 Jun 2016, 14:13, edited 1 time in total.
GMAT Club Legend
Joined: 11 Sep 2015
Posts: 4875
GMAT 1: 770 Q49 V46
Re: In a game, one player throws two fair, six-sided die at the  [#permalink]

Show Tags

23 Apr 2018, 12:25
Top Contributor
karishmatandon wrote:
In a game, one player throws two fair, six-sided die at the same time. If the player receives at least a five or a one on either die, that player wins. What is the probability that a player wins after playing the game once?

A. 1/3
B. 4/9
C. 5/9
D. 2/3
E. 3/4

So, the player wins if he/she rolls AT LEAST one 5 or 1.

When it comes to probability questions involving "at least," it's best to try using the complement.

That is, P(Event A happening) = 1 - P(Event A not happening)

So, here we get: P(AT LEAST one 5 or 1) = 1 - P(zero 5's or 1's)
= 1 - P(no 5 or 1 on 1st die AND no 5 or 1 on 2nd die)
= 1 - [P(no 5 or 1 on 1st die) x P(no 5 or 1 on 2nd die)]
= 1 - [ 4/6 x 4/6]
= 1 - [16/36]
= 20/36
= 5/9

Cheers,
Brent
_________________
Test confidently with gmatprepnow.com
Re: In a game, one player throws two fair, six-sided die at the   [#permalink] 23 Apr 2018, 12:25

Go to page    1   2    Next  [ 22 posts ]

In a game, one player throws two fair, six-sided die at the

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne