GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 23 Oct 2019, 21:42

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

In a recent street fair students were challenged to hit one of the sha

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58471
In a recent street fair students were challenged to hit one of the sha  [#permalink]

Show Tags

New post 07 Sep 2016, 04:27
2
4
00:00
A
B
C
D
E

Difficulty:

  15% (low)

Question Stats:

81% (01:41) correct 19% (01:58) wrong based on 165 sessions

HideShow timer Statistics

Image
In a recent street fair students were challenged to hit one of the shaded triangular regions on the large equilateral triangular board below with a ping pong ball. Each of the triangular regions is an equilateral triangle whose side is a third of the length of the large triangle board. If the ping pong ball hits the large triangular region, what is the probability of hitting a shaded triangle?

A. 1/5
B. 1/4
C. 1/3
D. 1/2
E. 2/3

Attachment:
T7080.png
T7080.png [ 6.37 KiB | Viewed 2119 times ]

_________________
Board of Directors
User avatar
V
Status: Stepping into my 10 years long dream
Joined: 18 Jul 2015
Posts: 3575
Reviews Badge
Re: In a recent street fair students were challenged to hit one of the sha  [#permalink]

Show Tags

New post 07 Sep 2016, 05:49
2
Bunuel wrote:
Image
In a recent street fair students were challenged to hit one of the shaded triangular regions on the large equilateral triangular board below with a ping pong ball. Each of the triangular regions is an equilateral triangle whose side is a third of the length of the large triangle board. If the ping pong ball hits the large triangular region, what is the probability of hitting a shaded triangle?

A. 1/5
B. 1/4
C. 1/3
D. 1/2
E. 2/3

Attachment:
T7080.png


Since, the side of each smaller equilateral = 1/3 side of larger equilateral, we can say ratio of areas = 1/9 ( as the area of equilateral triangle is sqrt(3)/4 *a^2)

Ratio of areas of 3 such smaller to the overall = 3 *1/9 = 1/3.

Hence, C
_________________
My LinkedIn abhimahna.
My GMAT Story: From V21 to V40
My MBA Journey: My 10 years long MBA Dream
My Secret Hacks: Best way to use GMATClub | Importance of an Error Log!
Verbal Resources: All SC Resources at one place | All CR Resources at one place
Blog: Subscribe to Question of the Day Blog
GMAT Club Inbuilt Error Log Functionality - View More.
New Visa Forum - Ask all your Visa Related Questions - here.
New! Best Reply Functionality on GMAT Club!
Find a bug in the new email templates and get rewarded with 2 weeks of GMATClub Tests for free
Check our new About Us Page here.
GMATH Teacher
User avatar
P
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 935
Re: In a recent street fair students were challenged to hit one of the sha  [#permalink]

Show Tags

New post 07 Nov 2018, 17:23
2
Bunuel wrote:
Image
In a recent street fair students were challenged to hit one of the shaded triangular regions on the large equilateral triangular board below with a ping pong ball. Each of the triangular regions is an equilateral triangle whose side is a third of the length of the large triangle board. If the ping pong ball hits the large triangular region in a random point, what is the probability of hitting a shaded triangle?

A. 1/5
B. 1/4
C. 1/3
D. 1/2
E. 2/3

\(? = P\left( {{\text{hit}}\,\,{\text{shaded}}\,\,{\text{region}}} \right)\)

\(\frac{{{S_{{\text{each}}\,\Delta {\text{shaded}}}}}}{{{S_{\Delta {\text{large}}}}}} = {\left( {\frac{1}{3}} \right)^2} = \frac{1}{9}\,\,\,\,\,\,\,\left[ {\,{\text{each}}\,\,\Delta {\text{shaded}}\,\,{\text{is}}\,\,{\text{similar}}\,\,{\text{to}}\,\,{\text{the}}\,\,\Delta {\text{large}}\,} \right]\)

\(? = 3 \cdot \frac{1}{9} = \frac{1}{3}\,\,\,\,\,\,\left( {{\text{geometric}}\,\,{\text{probability}}} \right)\)


This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.
_________________
Fabio Skilnik :: GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here: https://gmath.net
Target Test Prep Representative
User avatar
D
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 8147
Location: United States (CA)
Re: In a recent street fair students were challenged to hit one of the sha  [#permalink]

Show Tags

New post 09 Nov 2018, 13:25
1
Bunuel wrote:
Image
In a recent street fair students were challenged to hit one of the shaded triangular regions on the large equilateral triangular board below with a ping pong ball. Each of the triangular regions is an equilateral triangle whose side is a third of the length of the large triangle board. If the ping pong ball hits the large triangular region, what is the probability of hitting a shaded triangle?

A. 1/5
B. 1/4
C. 1/3
D. 1/2
E. 2/3

Attachment:
T7080.png


We see that each of the smaller shaded equilateral triangle has the same area. Furthermore, the unshaded region is a regular hexagon that can divide into 6 equilateral triangles each equalling to the area of a shaded triangle. Thus there are 3 + 6 = 9 equilateral triangles of the same area and the probability hitting a shaded triangle is 3/9 = 1/3.

Alternate Solution:

Let’s assume that each side of the large triangle is 6 units. The area of the large triangle is thus (1/2)(6)(6√3) = 18√3.

A side of any of the shaded triangles is 2. The area of one shaded triangle is (1/2)(2)(2√3) = 2√3. There are 3 shaded triangles, so their total area is 6√3.

The probability of hitting any shaded triangle is the total area of the shaded triangles divided by the total area of the entire large triangle: 6√3 / 18√3 = 1/3.

Answer: C
_________________

Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

Intern
Intern
avatar
B
Joined: 18 Oct 2017
Posts: 19
Location: India
Schools: ISB '21
Re: In a recent street fair students were challenged to hit one of the sha  [#permalink]

Show Tags

New post 08 Mar 2019, 02:58
No need of huge calculations. Since there exists only three shaded region and at a time ping pong ball can hit only one shaded region . So the probability is 1/3 ie 3 been the total of conditions elaborating as 3 shaded region. One shaded region to be hit so 1. Conclusion : 1/3
GMAT Club Bot
Re: In a recent street fair students were challenged to hit one of the sha   [#permalink] 08 Mar 2019, 02:58
Display posts from previous: Sort by

In a recent street fair students were challenged to hit one of the sha

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne