GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 15 Nov 2018, 08:57

ISB R1 results on Nov 15:

Join Chat Room for Live Updates


Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in November
PrevNext
SuMoTuWeThFrSa
28293031123
45678910
11121314151617
18192021222324
2526272829301
Open Detailed Calendar
  • Free GMAT Strategy Webinar

     November 17, 2018

     November 17, 2018

     07:00 AM PST

     09:00 AM PST

    Nov. 17, 7 AM PST. Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.
  • GMATbuster's Weekly GMAT Quant Quiz # 9

     November 17, 2018

     November 17, 2018

     09:00 AM PST

     11:00 AM PST

    Join the Quiz Saturday November 17th, 9 AM PST. The Quiz will last approximately 2 hours. Make sure you are on time or you will be at a disadvantage.

In a recent street fair students were challenged to hit one of the sha

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50610
In a recent street fair students were challenged to hit one of the sha  [#permalink]

Show Tags

New post 07 Sep 2016, 03:27
2
2
00:00
A
B
C
D
E

Difficulty:

  5% (low)

Question Stats:

83% (01:29) correct 17% (00:53) wrong based on 138 sessions

HideShow timer Statistics

Image
In a recent street fair students were challenged to hit one of the shaded triangular regions on the large equilateral triangular board below with a ping pong ball. Each of the triangular regions is an equilateral triangle whose side is a third of the length of the large triangle board. If the ping pong ball hits the large triangular region, what is the probability of hitting a shaded triangle?

A. 1/5
B. 1/4
C. 1/3
D. 1/2
E. 2/3

Attachment:
T7080.png
T7080.png [ 6.37 KiB | Viewed 1492 times ]

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Board of Directors
User avatar
V
Status: Stepping into my 10 years long dream
Joined: 18 Jul 2015
Posts: 3615
Premium Member Reviews Badge
Re: In a recent street fair students were challenged to hit one of the sha  [#permalink]

Show Tags

New post 07 Sep 2016, 04:49
2
Bunuel wrote:
Image
In a recent street fair students were challenged to hit one of the shaded triangular regions on the large equilateral triangular board below with a ping pong ball. Each of the triangular regions is an equilateral triangle whose side is a third of the length of the large triangle board. If the ping pong ball hits the large triangular region, what is the probability of hitting a shaded triangle?

A. 1/5
B. 1/4
C. 1/3
D. 1/2
E. 2/3

Attachment:
T7080.png


Since, the side of each smaller equilateral = 1/3 side of larger equilateral, we can say ratio of areas = 1/9 ( as the area of equilateral triangle is sqrt(3)/4 *a^2)

Ratio of areas of 3 such smaller to the overall = 3 *1/9 = 1/3.

Hence, C
_________________

My GMAT Story: From V21 to V40
My MBA Journey: My 10 years long MBA Dream
My Secret Hacks: Best way to use GMATClub | Importance of an Error Log!
Verbal Resources: All SC Resources at one place | All CR Resources at one place
Blog: Subscribe to Question of the Day Blog
GMAT Club Inbuilt Error Log Functionality - View More.
New Visa Forum - Ask all your Visa Related Questions - here.
New! Best Reply Functionality on GMAT Club!
Find a bug in the new email templates and get rewarded with 2 weeks of GMATClub Tests for free
Check our new About Us Page here.

GMATH Teacher
User avatar
G
Status: GMATH founder
Joined: 12 Oct 2010
Posts: 470
Re: In a recent street fair students were challenged to hit one of the sha  [#permalink]

Show Tags

New post 07 Nov 2018, 16:23
Bunuel wrote:
Image
In a recent street fair students were challenged to hit one of the shaded triangular regions on the large equilateral triangular board below with a ping pong ball. Each of the triangular regions is an equilateral triangle whose side is a third of the length of the large triangle board. If the ping pong ball hits the large triangular region in a random point, what is the probability of hitting a shaded triangle?

A. 1/5
B. 1/4
C. 1/3
D. 1/2
E. 2/3

\(? = P\left( {{\text{hit}}\,\,{\text{shaded}}\,\,{\text{region}}} \right)\)

\(\frac{{{S_{{\text{each}}\,\Delta {\text{shaded}}}}}}{{{S_{\Delta {\text{large}}}}}} = {\left( {\frac{1}{3}} \right)^2} = \frac{1}{9}\,\,\,\,\,\,\,\left[ {\,{\text{each}}\,\,\Delta {\text{shaded}}\,\,{\text{is}}\,\,{\text{similar}}\,\,{\text{to}}\,\,{\text{the}}\,\,\Delta {\text{large}}\,} \right]\)

\(? = 3 \cdot \frac{1}{9} = \frac{1}{3}\,\,\,\,\,\,\left( {{\text{geometric}}\,\,{\text{probability}}} \right)\)


This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.
_________________

Fabio Skilnik :: https://www.GMATH.net (Math for the GMAT)
Course release PROMO : finish our test drive till 30/Nov with (at least) 50 correct answers out of 92 (12-questions Mock included) to gain a 50% discount!

Target Test Prep Representative
User avatar
P
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 4170
Location: United States (CA)
Re: In a recent street fair students were challenged to hit one of the sha  [#permalink]

Show Tags

New post 09 Nov 2018, 12:25
1
Bunuel wrote:
Image
In a recent street fair students were challenged to hit one of the shaded triangular regions on the large equilateral triangular board below with a ping pong ball. Each of the triangular regions is an equilateral triangle whose side is a third of the length of the large triangle board. If the ping pong ball hits the large triangular region, what is the probability of hitting a shaded triangle?

A. 1/5
B. 1/4
C. 1/3
D. 1/2
E. 2/3

Attachment:
T7080.png


We see that each of the smaller shaded equilateral triangle has the same area. Furthermore, the unshaded region is a regular hexagon that can divide into 6 equilateral triangles each equalling to the area of a shaded triangle. Thus there are 3 + 6 = 9 equilateral triangles of the same area and the probability hitting a shaded triangle is 3/9 = 1/3.

Alternate Solution:

Let’s assume that each side of the large triangle is 6 units. The area of the large triangle is thus (1/2)(6)(6√3) = 18√3.

A side of any of the shaded triangles is 2. The area of one shaded triangle is (1/2)(2)(2√3) = 2√3. There are 3 shaded triangles, so their total area is 6√3.

The probability of hitting any shaded triangle is the total area of the shaded triangles divided by the total area of the entire large triangle: 6√3 / 18√3 = 1/3.

Answer: C
_________________

Scott Woodbury-Stewart
Founder and CEO

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

GMAT Club Bot
Re: In a recent street fair students were challenged to hit one of the sha &nbs [#permalink] 09 Nov 2018, 12:25
Display posts from previous: Sort by

In a recent street fair students were challenged to hit one of the sha

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.