GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 20 Nov 2019, 17:49

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

In a room filled with 7 people, 4 people have exactly 1 sibling in the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 59182
Re: In a room filled with 7 people, 4 people have exactly 1 sibling in the  [#permalink]

Show Tags

New post 30 Jun 2019, 10:10
Sreeragc wrote:
Bunuel wrote:
In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?

A. 5/21
B. 3/7
C. 4/7
D. 5/7
E. 16/21

As there are 4 people with exactly 1 sibling each: we have two pairs of siblings (1-2; 3-4).
As there are 3 people with exactly 2 siblings each: we have one triple of siblings (5-6-7).

Solution #1:
# of selections of 2 out of 7 - \(C^2_7=21\);
# of selections of 2 people which are not siblings - \(C^1_2*C^1_2\) (one from first pair of siblings*one from second pair of siblings)+\(C^1_2*C^1_3\) (one from first pair of siblings*one from triple)+ \(C1^_2*C^1_3\)(one from second pair of siblings*one from triple) \(=4+6+6=16\).

\(P=\frac{16}{21}\)

Solution #2:
# of selections of 2 out of 7 - \(C^2_7=21\);
# of selections of 2 siblings - \(C^2_3+C^2_2+C^2_2=3+1+1=5\);

\(P=1-\frac{5}{21}=\frac{16}{21}\).

Solution #3:
\(P=2*\frac{3}{7}*\frac{4}{6}+2*\frac{2}{7}*\frac{2}{6}=\frac{4}{7}+\frac{4}{21}=\frac{16}{21}\).

Answer: E.




Bunuel

in solution 1, why are we taking it to 3 sections, after combination from both the groups i.e \(C^1_2*C^1_2\) (one from first pair of siblings*one from second pair of siblings),
why cant we select one from triple and then any one from the rest for as they wont be siblings to each other.

So i took it like
selections of 2 people which are not siblings = \(C^1_2*C^1_2\) (one from first pair of siblings*one from second pair of siblings) + \(C^1_3*C^1_4\) (one from triple*one from rest)

What is wrong in here?? I'm really confused.


I think I already answered similar doubt here: https://gmatclub.com/forum/in-a-room-fi ... l#p1100701
_________________
Target Test Prep Representative
User avatar
V
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 8427
Location: United States (CA)
Re: In a room filled with 7 people, 4 people have exactly 1 sibling in the  [#permalink]

Show Tags

New post 18 Sep 2019, 09:54
1
reply2spg wrote:
In a room filled with 7 people, 4 people have exactly 1 sibling in the room and 3 people have exactly 2 siblings in the room. If two individuals are selected from the room at random, what is the probability that those two individuals are NOT siblings?

A. 5/21
B. 3/7
C. 4/7
D. 5/7
E. 16/21


Let A, B, C, D, E, F, and G be the 7 people in the room. To satisfy the condition that 4 people have exactly 1 sibling and 3 people have exactly 2 siblings, we can let A and B be siblings (but not to other people), C and D be siblings (but not to other people), and E, F and G are siblings (but not to other people).

Let’s consider the probability of how each person is chosen:

If A is chosen first, then B can’t be chosen. So the probability is:

1/7 x 5/6 = 5/42

This probability will be the same if B, C, or D is chosen first.

If E is chosen first, then neither F nor G can be chosen. So the probability is:

1/7 x 4/6 = 4/42

This probability will be the same if F or G is chosen first.

Therefore, the overall probability is:

5/42 x 4 + 4/42 x 3 = 20/42 + 12/42 = 32/42 = 16/21

Alternate Solution:

Notice that 2 people can be chosen out of 7 people in 7C2 = 7!/(5!*2!) = (7 x 6)/2 = 21 ways.

With A, B, C, D, E, F, and G as above, we see that there are 5 ways to choose a sibling pair: A-B, C-D, E-F, E-G and F-G. Thus, 21 - 5 = 16 choices of do not include a sibling pair. Therefore, the probability that the chosen two people are not siblings is 16/21.

Answer: E
_________________

Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

GMAT Club Bot
Re: In a room filled with 7 people, 4 people have exactly 1 sibling in the   [#permalink] 18 Sep 2019, 09:54

Go to page   Previous    1   2   3   [ 42 posts ] 

Display posts from previous: Sort by

In a room filled with 7 people, 4 people have exactly 1 sibling in the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne