Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

In the diagram to the right, triangle PQR has a right angle [#permalink]

Show Tags

31 Oct 2007, 09:07

1

This post received KUDOS

8

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

85% (hard)

Question Stats:

63% (04:23) correct
38% (03:35) wrong based on 152 sessions

HideShow timer Statistics

In the diagram to the right, triangle PQR has a right angle at Q and a perimeter of 60. Line segment QS is perpendicular to PR and has a length of 12. PQ > QR. What is the ratio of the area of triangle PQS to the area of triangle RQS?

In the diagram to the right, triangle PQR has a right angle at Q and a perimeter of 60. Line segment QS is perpendicular to PR and has a length of 12. PQ > QR. What is the ratio of the area of triangle PQS to the area of triangle RQS?

3/2

7/4

15/8

16/9

2

i get 16/9 but after spending too much time trying to figure it out.
i'll try my best to explain as best as i can (see my diagram below)

stem only tells you 1) these three triangles are all right triangles (so you can easily apply pythagorean theorem), 2) the perimeter of the largest triangle, 3) the length of the bisector, and 4) PQ > QR. From this you have to think about the possible lengths to find the sides.

I thought about the common right triangle sides: 3-4-5, 6-8-10, etc and saw that 3-4-5 = 12 and 60 is a multiple of 12 (5x). So the possible sides are [3-4-5]*5 = 15-20-25. But first have to test it out. We know that PQ > QR and the largest side is the hypotenuse. So PQ = 20, QR = 15, and PR = 25. From there I used side QS = 12 to figure out the splits between PS and RS. (Lucky thing it worked out!!)

Re: In the diagram to the right, triangle PQR has a right angle [#permalink]

Show Tags

15 Apr 2012, 21:52

jimjohn wrote:

In the diagram to the right, triangle PQR has a right angle at Q and a perimeter of 60. Line segment QS is perpendicular to PR and has a length of 12. PQ > QR. What is the ratio of the area of triangle PQS to the area of triangle RQS?

3/2

7/4

15/8

16/9

2

can somebody give OA for this?
_________________

Regards, Harsha

Note: Give me kudos if my approach is right , else help me understand where i am missing.. I want to bell the GMAT Cat

In the diagram, triangle PQR has a right angle at Q and a perimeter of 60. Line segment QS is perpendicular to PR and has a length of 12. PQ > QR. What is the ratio of the area of triangle PQS to the area of triangle RQS? A. 3/2 B. 7/4 C. 15/8 D. 16/9 E. 2

Attachment:

Triangle PQR.GIF [ 2.52 KiB | Viewed 4531 times ]

Let \(PQ=x\), \(QR=y\) and \(PR=z\).

Given: \(x+y+z=60\) (i); Equate the areas: \(\frac{1}{2}*xy=\frac{1}{2}*QS*z\) (area of PQR can be calculated by 1/2*leg*leg and 1/2* perpendicular to hypotenuse*hypotenuse) --> \(xy=12z\) (ii); Aslo \(x^2+y^2=z^2\) (iii);

So, we have: (i) \(x+y+z=60\); (ii) \(xy=12z\); (iii) \(x^2+y^2=z^2\).

From (iii) \((x+y)^2-2xy=z^2\) --> as from (i) \(x+y=60-z\) and from (ii) \(xy=12z\) then (\(60-z)^2-2*12z=z^2\) --> \(3600-120z+z^2-24z=z^2\) --> \(3600=144z\) --> \(z=25\);

From (i) \(x+y=35\) and from (ii) \(xy=300\) --> solving for \(x\) and \(y\) --> \(x=20\) and \(y=15\) (as given that \(x>y\)).

Next, perpendicular to the hypotenuse will always divide the triangle into two triangles with the same properties as the original triangle. So, PQR and SQR are similar. In two similar triangles, the ratio of their areas is the square of the ratio of their sides: \(\frac{AREA}{area}=\frac{S^2}{s^2}\).

So, \(\frac{x^2}{y^2}=\frac{AREA}{area}\) --> \(\frac{AREA}{area}=\frac{400}{225}=\frac{16}{9}\)

Military MBA Acceptance Rate Analysis Transitioning from the military to MBA is a fairly popular path to follow. A little over 4% of MBA applications come from military veterans...

Best Schools for Young MBA Applicants Deciding when to start applying to business school can be a challenge. Salary increases dramatically after an MBA, but schools tend to prefer...

Marty Cagan is founding partner of the Silicon Valley Product Group, a consulting firm that helps companies with their product strategy. Prior to that he held product roles at...