Sep 18 12:00 PM EDT  01:00 PM EDT Mindful MBA series Part 1, Fall 2019. Becoming a More Mindful GMAT Taker. Tuesday, September 18th at 12 PM ET Sep 19 12:00 PM PDT  10:00 PM PDT On Demand $79, For a score of 4951 (from current actual score of 40+) AllInOne Standard & 700+ Level Questions (150 questions) Sep 19 08:00 PM EDT  09:00 PM EDT Strategies and techniques for approaching featured GMAT topics. One hour of live, online instruction. Sep 19 10:00 PM PDT  11:00 PM PDT Join a FREE 1day Data Sufficiency & Critical Reasoning workshop and learn the best strategies to tackle the two trickiest question types in the GMAT! Sep 21 07:00 AM PDT  09:00 AM PDT Learn reading strategies that can help even nonvoracious reader to master GMAT RC Sep 21 08:00 PM PDT  09:00 PM PDT Exclusive offer! Get 400+ Practice Questions, 25 Video lessons and 6+ Webinars for FREE Sep 23 08:00 AM PDT  09:00 AM PDT Join a free 1hour webinar and learn how to create the ultimate study plan, and be accepted to the upcoming Round 2 deadlines. Save your spot today! Monday, September 23rd at 8 AM PST
Author 
Message 
TAGS:

Hide Tags

Senior SC Moderator
Joined: 14 Nov 2016
Posts: 1321
Location: Malaysia

In the figure above, SAND and SURF are squares, and O is the center of
[#permalink]
Show Tags
Updated on: 26 May 2017, 06:02
Question Stats:
54% (02:49) correct 46% (03:06) wrong based on 101 sessions
HideShow timer Statistics
In the figure above, SAND and SURF are squares, and O is the center of the circle. If Q is the sum of the areas of squares SAND and SURF and C is the area of the circle, then the fraction C/Q is (A) less than 5/8 (B) between 5/8 and 3/4 (C) between 3/4 and 7/8 (D) between 7/8 and 1 (E) greater 1 Attachment:
Untitled.png [ 36.59 KiB  Viewed 1883 times ]
Official Answer and Stats are available only to registered users. Register/ Login.
_________________
"Be challenged at EVERY MOMENT."“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”"Each stage of the journey is crucial to attaining new heights of knowledge."Rules for posting in verbal forum  Please DO NOT post short answer in your post! Advanced Search : https://gmatclub.com/forum/advancedsearch/
Originally posted by hazelnut on 26 May 2017, 05:02.
Last edited by Bunuel on 26 May 2017, 06:02, edited 2 times in total.
Edited the question.



Senior Manager
Joined: 13 Oct 2016
Posts: 361
GPA: 3.98

Re: In the figure above, SAND and SURF are squares, and O is the center of
[#permalink]
Show Tags
26 May 2017, 06:18
hazelnut wrote: In the figure above, SAND and SURF are squares, and O is the center of the circle. If Q is the sum of the areas of squares SAND and SURF and C is the area of the circle, then the fraction C/Q is (A) less than 5/8 (B) between 5/8 and 3/4 (C) between 3/4 and 7/8 (D) between 7/8 and 1 (E) greater 1 Side of SAND – x Side of SURF – y Radius of the circle – r Now let’s take a look at the right triangle SUA x^2 + y^2 = 4r^2 r^2 = (x^2 + y^2)/4 Taking the required fraction: C/Q = π*r^2 / (x^2 + y^2) = π/4 = 3.14/4 is slightly more than 3/4. Answer C.



Current Student
Joined: 18 Aug 2016
Posts: 613
Concentration: Strategy, Technology
GMAT 1: 630 Q47 V29 GMAT 2: 740 Q51 V38

Re: In the figure above, SAND and SURF are squares, and O is the center of
[#permalink]
Show Tags
26 May 2017, 06:43
hazelnut wrote: In the figure above, SAND and SURF are squares, and O is the center of the circle. If Q is the sum of the areas of squares SAND and SURF and C is the area of the circle, then the fraction C/Q is (A) less than 5/8 (B) between 5/8 and 3/4 (C) between 3/4 and 7/8 (D) between 7/8 and 1 (E) greater 1 Let side of SAND be "a" and SURF be "b" AREA of SAND & SURF will be \(a^2+b^2\) Radius of circle = \sqrt{a^2 + b^2} On solving Area of circle/Area of Squares = 3.14/4 which lies between 3/4 & 7/8 hence option C
_________________
We must try to achieve the best within us
Thanks Luckisnoexcuse



Intern
Joined: 13 May 2017
Posts: 8

Re: In the figure above, SAND and SURF are squares, and O is the center of
[#permalink]
Show Tags
27 May 2017, 00:33
Let's take radius of circle=x Then Q= 4(x )square C= 2*22/7*x*x So C/Q= 11/7 Sent from my iPhone using GMAT Club Forum mobile app



Intern
Joined: 28 May 2015
Posts: 36
Location: India
GPA: 4

Re: In the figure above, SAND and SURF are squares, and O is the center of
[#permalink]
Show Tags
27 May 2017, 06:32
Since Triangle USA is a right angled triangle with UA as diameter of the circle. If we assume sides of sqaure as 6 and 8 respectively Then 6^2 + 8^2 = 10^2 = UA^2 Which is basically sum of the areas of two sqaures I.e. P Area of circle C =( π•10^2 )/4 Ratio C /P = [ ( π•10^2 )/4 ] ÷ 10^2 = π / 4 = 3.14 / 4 , greater than 3/4 Option C Sent from my ONE A2003 using GMAT Club Forum mobile app



Senior Manager
Joined: 18 Dec 2017
Posts: 325

Re: In the figure above, SAND and SURF are squares, and O is the center of
[#permalink]
Show Tags
24 Aug 2019, 08:56
hazelnut wrote: In the figure above, SAND and SURF are squares, and O is the center of the circle. If Q is the sum of the areas of squares SAND and SURF and C is the area of the circle, then the fraction C/Q is (A) less than 5/8 (B) between 5/8 and 3/4 (C) between 3/4 and 7/8 (D) between 7/8 and 1 (E) greater 1 I have a slightly different approach. You can see the right triangle. It is right there. So why not to just assume the sides? Let's say it is 6,8,10 Triplet. Area of squares is 64+36 which is 100. Area of Circle is Pi*5*5 which works out to be approximately 75. Since you know actual value is higher the fraction will be higher than 3/4. Hence C.
_________________
Please be generous in giving Kudos!! “Practice is the hardest part of learning, and training is the essence of transformation.” ― Ann VoskampSoftware Tester currently in USA ( )



SVP
Joined: 03 Jun 2019
Posts: 1500
Location: India

In the figure above, SAND and SURF are squares, and O is the center of
[#permalink]
Show Tags
25 Aug 2019, 02:59
hazelnut wrote: In the figure above, SAND and SURF are squares, and O is the center of the circle. If Q is the sum of the areas of squares SAND and SURF and C is the area of the circle, then the fraction C/Q is (A) less than 5/8 (B) between 5/8 and 3/4 (C) between 3/4 and 7/8 (D) between 7/8 and 1 (E) greater 1 Given: In the figure above, SAND and SURF are squares, and O is the center of the circle. Asked: If Q is the sum of the areas of squares SAND and SURF and C is the area of the circle, then the fraction C/Q is \(Q = a^b + b^2 = D^2\) where D is the diameter of the circle \(C = \pi r^2 = \frac{\pi D^2}{4} = \frac{\pi}{4} Q\) \(\frac{C}{Q} = \frac{\pi}{4} =\frac{7}{8} > \frac{3.14}{4} > \frac{3}{4}\) IMO C
_________________
"Success is not final; failure is not fatal: It is the courage to continue that counts." Please provide kudos if you like my post. Kudos encourage active discussions. My GMAT Resources:  Efficient LearningAll you need to know about GMAT quantTele: +911140396815 Mobile : +919910661622 Email : kinshook.chaturvedi@gmail.com




In the figure above, SAND and SURF are squares, and O is the center of
[#permalink]
25 Aug 2019, 02:59






