Author 
Message 
TAGS:

Hide Tags

Senior Manager
Status: Finally Done. Admitted in Kellogg for 2015 intake
Joined: 25 Jun 2011
Posts: 439
Location: United Kingdom
Concentration: International Business, Strategy
GPA: 2.9
WE: Information Technology (Consulting)

In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
11 Feb 2012, 15:21
Question Stats:
58% (02:54) correct 42% (03:00) wrong based on 849 sessions
HideShow timer Statistics
In the figure, circle O has center O, diameter AB and a radius of 5. Line CD is parallel to the diameter. What is the perimeter of the shaded region? A. \((\frac{5}{3})\pi + 5\sqrt{3}\) B. \((\frac{5}{3})\pi + 10\sqrt{√}3\) C. \((\frac{10}{3})\pi + 5\sqrt{3}\) D. \((\frac{10}{3})\pi + 10\sqrt{3}\) E. \((\frac{10}{3})\pi + 20\sqrt{3}\) Attachment:
Perimeter.PNG [ 7.32 KiB  Viewed 83729 times ]
I can think of few pointers such as The value of x will be 30 degrees because CD is parallel to diameter. Angle COA and AOE will each be 60 degrees as the central angle is double the inscribed angle. But I am still struggling to get through the question.
Official Answer and Stats are available only to registered users. Register/ Login.
_________________
Best Regards, E.
MGMAT 1 > 530 MGMAT 2> 640 MGMAT 3 > 610 GMAT ==> 730




Math Expert
Joined: 02 Sep 2009
Posts: 58988

In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
11 Feb 2012, 15:49
In the figure, circle O has center O, diameter AB and a radius of 5. Line CD is parallel to the diameter. What is the perimeter of the shaded region?A. \((\frac{5}{3})\pi + 5\sqrt{3}\) B. \((\frac{5}{3})\pi + 10\sqrt{3}\) C. \((\frac{10}{3})\pi + 5\sqrt{3}\) D. \((\frac{10}{3})\pi + 10\sqrt{3}\) E. \((\frac{10}{3})\pi + 20\sqrt{3}\) Since CD is parallel to AB then \(\angle CBA = \angle BCD=30°\) > \(\angle CBE = 60°\) > \(\angle COE=2*60°=120°\) (according to the central angle theorem) > length of minor arc CE is \(\frac{120}{360}*2\pi{r}=\frac{10}{3}*\pi\); Now, we should find the lengths of BC and BE ( notice that they are equal). Since \(\angle CBA=30°\) then triangle ACB is 30°60°90° right triangle (AB=diameter means that \(\angle C=90°\)), thus \(\frac{BC}{AB}=\frac{\sqrt{3}}{2}\), (BC is opposite to 60 degrees so corresponds to \(\sqrt{3}\)) > \(\frac{BC}{10}=\frac{\sqrt{3}}{2}\) (AB = diameter = 2r = 10) > \(BC=5\sqrt{3}\); Thus the perimeter of the shaded region is \((minor \ arc \ CE)+BC+BE\): \(\frac{10}{3}*\pi+5\sqrt{3}+5\sqrt{3}=\frac{10}{3}*\pi+10\sqrt{3}\). Answer: D.
_________________




Math Expert
Joined: 02 Sep 2009
Posts: 58988

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
20 Jun 2013, 06:39
Bumping for review and further discussion*. Get a kudos point for an alternative solution! *New project from GMAT Club!!! Check HERE
_________________



Intern
Joined: 03 Dec 2010
Posts: 21

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
01 Mar 2012, 20:40
I got a doubt. In 306090 rule, side opp to 60 is sqrt3* side opp 30 isn't it ? So with that rule if angle CAB is 306090 triangle, whr AB=5 as angle ACB is 90, then angle CBA is 30, so its length is AC= 5/2, and angle is CAB is 60 degree, CB= sqrt3* 5/2. So since CB & BE are of same length (acc to your explnt) then CB+BE = Sqrt3*5/2 + Sqrt3*5/2 = sqrt3*5 . hence, I get ans as C.
Pls explain.



Math Expert
Joined: 02 Sep 2009
Posts: 58988

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
01 Mar 2012, 21:18
priyalr wrote: I got a doubt. In 306090 rule, side opp to 60 is sqrt3* side opp 30 isn't it ? So with that rule if angle CAB is 306090 triangle, whr AB=5 as angle ACB is 90, then angle CBA is 30, so its length is AC= 5/2, and angle is CAB is 60 degree, CB= sqrt3* 5/2. So since CB & BE are of same length (acc to your explnt) then CB+BE = Sqrt3*5/2 + Sqrt3*5/2 = sqrt3*5 . hence, I get ans as C.
Pls explain. The red parts are not correct. The point is that \(AB=diameter=2*radius=2*5=10\), not 5,. You've done everything right after this step but got different numerical values because of this one mistake. It should be: \(AC=\frac{10}{2}=5\) > \(CB=5\sqrt{3}\) > \(CB+BE=5\sqrt{3}+5\sqrt{3}=10\sqrt{3}\). Hope it's clear.
_________________



Senior Manager
Joined: 23 Oct 2010
Posts: 320
Location: Azerbaijan
Concentration: Finance

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
02 Mar 2012, 00:41
Bunuel wrote: Now, we should find the lengths of BC and BE (notice that they are equal). Since <CBA=30 then triangle ACB is 306090 right triangle (AB=diameter means that <C=90), thus \(\frac{BC}{AB}=\frac{\sqrt{3}}{2}\), (BC is opposite to 60 degrees so corresponds to \(\sqrt{3}\)) > \(\frac{BC}{10}=\frac{\sqrt{3}}{2}\) (AB=diameter=2r=10) > \(BC=5\sqrt{3}\);
I didnt get this part. could u please explain sqroot3/2, or give some links where I can read theory? btw, Bunuel, is there another way to solve this question?
_________________
Happy are those who dream dreams and are ready to pay the price to make them come true
I am still on all gmat forums. msg me if you want to ask me smth



Math Expert
Joined: 02 Sep 2009
Posts: 58988

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
02 Mar 2012, 03:42
LalaB wrote: Bunuel wrote: Now, we should find the lengths of BC and BE (notice that they are equal). Since <CBA=30 then triangle ACB is 306090 right triangle (AB=diameter means that <C=90), thus \(\frac{BC}{AB}=\frac{\sqrt{3}}{2}\), (BC is opposite to 60 degrees so corresponds to \(\sqrt{3}\)) > \(\frac{BC}{10}=\frac{\sqrt{3}}{2}\) (AB=diameter=2r=10) > \(BC=5\sqrt{3}\);
I didnt get this part. could u please explain sqroot3/2, or give some links where I can read theory? btw, Bunuel, is there another way to solve this question? Triangle ACB is a 30°60°90° right triangle. AC is opposite the smallest angle 30°, BC is opposite 60° angle, and hypotenuse AB is opposite the largest angle 90°. • A right triangle where the angles are 30°, 60°, and 90°.This is one of the 'standard' triangles you should be able recognize on sight. A fact you should commit to memory is: The sides are always in the ratio \(1 : \sqrt{3}: 2\). Notice that the smallest side (1) is opposite the smallest angle (30°), and the longest side (2) is opposite the largest angle (90°). So, for our question BC (the side opposite 60° angle) and AB (the side opposite the largest angle 90°) must be in the ratio \(\sqrt{3}:2\) > \(\frac{BC}{AB}=\frac{\sqrt{3}}{2}\), and since AB=diameter=2r=10 then \(\frac{BC}{10}=\frac{\sqrt{3}}{2}\) > \(BC=5\sqrt{3}\). For more on this subject check Triangles chapter of Math Book: mathtriangles87197.htmlHope it helps.
_________________



Senior Manager
Joined: 23 Oct 2010
Posts: 320
Location: Azerbaijan
Concentration: Finance

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
02 Mar 2012, 03:57
Oh, I forgot that ABS ia a right triangle. thats why I didnt get whats sqroot3/2. my fault, sorry.
_________________
Happy are those who dream dreams and are ready to pay the price to make them come true
I am still on all gmat forums. msg me if you want to ask me smth



Intern
Joined: 13 Jul 2014
Posts: 9
Location: India
Concentration: Operations, Technology
GMAT Date: 11062014

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
13 Jul 2014, 01:47
Dienekes wrote: Bunuel wrote: enigma123 wrote: In the figure, circle O has center O, diameter AB and a radius of 5. Line CD is parallel to the diameter. What is the perimeter of the shaded region?
A. (5/3)pi + 5√3 B. (5/3) pi + 10√3 C. (10/3) pi + 5√3 D. (10/3) pi + 10√3 E. (10/3) pi + 20√3 \
Since CD is parallel to AB then <CBA=<BCD=30 > <CBE=60 > <COE=2*60=120 (according to the central angle theorem) > length of minor arc CE is \(\frac{120}{360}*2\pi{r}=\frac{10}{3}*\pi\);
Now, we should find the lengths of BC and BE (notice that they are equal). Since <CBA=30 then triangle ACB is 306090 right triangle (AB=diameter means that <C=90), thus \(\frac{BC}{AB}=\frac{\sqrt{3}}{2}\), (BC is opposite to 60 degrees so corresponds to \(\sqrt{3}\)) > \(\frac{BC}{10}=\frac{\sqrt{3}}{2}\) (AB=diameter=2r=10) > \(BC=5\sqrt{3}\);
Thus the perimeter of the shaded region is (minor arc CE)+BC+BE: \(\frac{10}{3}*\pi+5\sqrt{3}+5\sqrt{3}=\frac{10}{3}*\pi+10\sqrt{3}\).
Answer: D. Hi Bunuel, How did you find that BC and BE are equal? Thanks! Hello Dienekes, Triangles ACB and AEB are Similar Triangles with a common side AB. As per the property of Similar Triangles, ratios of sides are equal, hence BC = BE. Hope this clarifies your doubt. Regards, Bharat.
_________________
Regards, Bharat Bhushan Sunkara.
"You need to sacrifice what you are TODAY, for what you want to be TOMORROW!!"



Math Expert
Joined: 02 Sep 2009
Posts: 58988

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
14 Jul 2014, 02:41
Dienekes wrote: Bunuel wrote: enigma123 wrote: In the figure, circle O has center O, diameter AB and a radius of 5. Line CD is parallel to the diameter. What is the perimeter of the shaded region? A. (5/3)pi + 5√3 B. (5/3) pi + 10√3 C. (10/3) pi + 5√3 D. (10/3) pi + 10√3 E. (10/3) pi + 20√3 Since CD is parallel to AB then <CBA=<BCD=30 > <CBE=60 > <COE=2*60=120 (according to the central angle theorem) > length of minor arc CE is \(\frac{120}{360}*2\pi{r}=\frac{10}{3}*\pi\); Now, we should find the lengths of BC and BE (notice that they are equal). Since <CBA=30 then triangle ACB is 306090 right triangle (AB=diameter means that <C=90), thus \(\frac{BC}{AB}=\frac{\sqrt{3}}{2}\), (BC is opposite to 60 degrees so corresponds to \(\sqrt{3}\)) > \(\frac{BC}{10}=\frac{\sqrt{3}}{2}\) (AB=diameter=2r=10) > \(BC=5\sqrt{3}\); Thus the perimeter of the shaded region is (minor arc CE)+BC+BE: \(\frac{10}{3}*\pi+5\sqrt{3}+5\sqrt{3}=\frac{10}{3}*\pi+10\sqrt{3}\). Answer: D. Hi Bunuel, How did you find that BC and BE are equal? Thanks! BC and BE are deviated by the same degree from the diameter AB, thus they are mirror images of each other around AB, therefore they must be equal. Does this make sense?
_________________



CEO
Joined: 20 Mar 2014
Posts: 2573
Concentration: Finance, Strategy
GPA: 3.7
WE: Engineering (Aerospace and Defense)

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
05 Jul 2015, 14:01
luisnavarro wrote: Hi Bunuel,
Could you help me with this?:
The right triangle with hypotenuse 10 is not supposed to be a multiple of the (3  4  5) right triangle??? Then if it were a multiple of this (3  4  5) it would be (6  8 10); then CB would be 8 instead of 5√3.... I am confused why this results are different. I was thinking that whatever hypotenuse of 10 with 30  60  90 right triangle had to match with the 6  8  10 shortcut... Could you help me?
Thanks a lot.
Regards.
Luis Navarro Looking for 700
You are not looking at this correctly. \(1:\sqrt{3}:2\) is only applicable for triangles having angles as \(30^{\circ},60^{\circ}, 90^{\circ}\) 2nd 'special' type of right triangles are the \(45^{\circ},45^{\circ} , 90^{\circ}\) , in which the ratio of the sides becomes \(1:1:\sqrt{2}\) Right triangles that do not fall under the above 2 cases should not be mixed with the above rules. These triangles have sides that vary with the relative angles inside the triangle. Triangles with sides 3:4:5 or any multiples of this such as 6:8:10 or 9:12:15 etc do not come under the 2 rules mentioned above and thus you will not get the same proportions for the sides. Hope this clears your doubt



CEO
Joined: 20 Mar 2014
Posts: 2573
Concentration: Finance, Strategy
GPA: 3.7
WE: Engineering (Aerospace and Defense)

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
05 Jul 2015, 15:01
luisnavarro wrote: Engr2012 wrote: luisnavarro wrote: Hi Bunuel,
Could you help me with this?:
The right triangle with hypotenuse 10 is not supposed to be a multiple of the (3  4  5) right triangle??? Then if it were a multiple of this (3  4  5) it would be (6  8 10); then CB would be 8 instead of 5√3.... I am confused why this results are different. I was thinking that whatever hypotenuse of 10 with 30  60  90 right triangle had to match with the 6  8  10 shortcut... Could you help me?
Thanks a lot.
Regards.
Luis Navarro Looking for 700
You are not looking at this correctly. \(1:\sqrt{3}:2\) is only applicable for triangles having angles as \(30^{\circ},60^{\circ}, 90^{\circ}\) 2nd 'special' type of right triangles are the \(45^{\circ},45^{\circ} , 90^{\circ}\) , in which the ratio of the sides becomes \(1:1:\sqrt{2}\) Right triangles that do not fall under the above 2 cases should not be mixed with the above rules. These triangles have sides that vary with the relative angles inside the triangle. Triangles with sides 3:4:5 or any multiples of this such as 6:8:10 or 9:12:15 etc do not come under the 2 rules mentioned above and thus you will not get the same proportions for the sides. Hope this clears your doubt Thanks a lot... That means that 3  4  5 right triangle is not a 30  60  90 right triangle? Yes, exactly. The 345 triangle or a triangle with any of the other multiples of 345 is not a 306090 triangle. FYI, 345 triangle has angles as \(36.87^{\circ}, 53.13^{\circ},90^{\circ}\) triangle ( For GMAT, you do not have to remember angles that are not 0, 30, 45 60 or 90). It actually follows from the fact that 306090 triangle will always have sides in the ratio: \(1:\sqrt{3}:2\). The opposite is true as well that if a triangle has sides in the ration \(1:\sqrt{3}:2\), the triangle will then be 306090. The same logic applies to 454590 triangle as well. Hope this clears your doubt.



CEO
Joined: 20 Mar 2014
Posts: 2573
Concentration: Finance, Strategy
GPA: 3.7
WE: Engineering (Aerospace and Defense)

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
21 Jul 2015, 12:13
varunvarma401 wrote: Thank you for the explanation Engr2012.
But if we consider a circle with the radius of BC and the sector with angle 60, then the arc length could be calculated right? Look at the attached picture Yes, if you are given that "x" = 60 (in the attached picture), radius = r , then length of the arc =\(l = r*\theta\). where \(\theta\)= angle in RADIANS and not degrees that is made by the arc at the CENTER. Thus \(\theta\) in this case will be 2*60 = 120 degrees For degree to radian conversion, use the fact that 180 degrees = \(\pi\) radians. Thus, for the example you have quoted, \(l = r*[(120/180)*\pi] = r*2*\pi/3\)
Attachments
image.jpg [ 22.55 KiB  Viewed 2449 times ]



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 9772
Location: Pune, India

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
07 Apr 2017, 02:53
enigma123 wrote: Attachment: Perimeter.PNG In the figure, circle O has center O, diameter AB and a radius of 5. Line CD is parallel to the diameter. What is the perimeter of the shaded region? A. (5/3)pi + 5√3 B. (5/3) pi + 10√3 C. (10/3) pi + 5√3 D. (10/3) pi + 10√3 E. (10/3) pi + 20√3 I can think of few pointers such as The value of x will be 30 degrees because CD is parallel to diameter. Angle COA and AOE will each be 60 degrees as the central angle is double the inscribed angle. But I am still struggling to get through the question. CD and AB are parallel so x = 30 degrees since they are alternate interior angles. Angle CBE is 2*30 = 60 degrees. This means arc CE subtends a central angle of 120 degrees (Central angle is twice the angle subtended at the circumference). So arc CE is one third of the circumference of the circle. Circumference of the circle \(= 2 *\pi * r = 10 * \pi\) Length of arc CE \(= (10/3) * \pi\) Since angle CBE is 60 degrees, triangle CBE is equilateral. As discussed in the post given below: https://www.veritasprep.com/blog/2013/0 ... relations/The ratio of side of the equilateral triangle inscribed in a circle and the radius of the circle \(= a : r = \sqrt{3}:1\) So \(BC = BE = 5*\sqrt{3}\) \(Perimeter = (10/3) * \pi + 10*\sqrt{3}\) Answer (D)
_________________
Karishma Veritas Prep GMAT Instructor
Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >



GMAT Club Legend
Joined: 12 Sep 2015
Posts: 4055
Location: Canada

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
28 Apr 2018, 10:08
enigma123 wrote: In the figure, circle O has center O, diameter AB and a radius of 5. Line CD is parallel to the diameter. What is the perimeter of the shaded region? A. \((\frac{5}{3})\pi + 5\sqrt{3}\) B. \((\frac{5}{3})\pi + 10\sqrt{√}3\) C. \((\frac{10}{3})\pi + 5\sqrt{3}\) D. \((\frac{10}{3})\pi + 10\sqrt{3}\) E. \((\frac{10}{3})\pi + 20\sqrt{3}\) IMPORTANT: unless stated otherwise, the diagrams in Problem Solving geometry questions are DRAWN TO SCALE. I'll solve this question using estimation. Since the diameter AB = 10, we can ESTIMATE the length of CB. It looks like CB is just a little bit shorter than AB. So, I'll say that the length of side CB is approximately 9. This means the length of side EB is approximately 9 as well. Finally, arc EC looks a little bit shorter than sides CB and EB, so I'll estimate it to be length 8 So, the TOTAL perimeter = 9 + 9 + 8 = 26 Now check the answer choices: ASIDE: On test day, everyone should know the following apprximations: √2 ≈ 1.4 √3 ≈ 1.7 √5 ≈ 2.2 Also, we'll say that pi ≈ 3A. (5/3)pi + 5√3 ≈ 5 + 8.5 ≈ 13.5 B. (5/3)pi + 10√3 ≈ 5 + 17 ≈ 22 C. (10/3)pi + 5√3 ≈ 10 + 8.5 ≈ 18.5 D. (10/3)pi + 10√3 ≈ 10 + 17 ≈ 27 E. (10/3)pi + 20√3 ≈ 10 + 34 ≈ 44 Of these, it appears that D is the closest. Aside: We can see that answer choice B is pretty close too. At this point, you have a timemanagement decision. You can either stick with D, and use your extra time elsewhere, or your can spend time trying to be more certain of the answer. Your choice. That said, D is the correct answer. Cheers, Brent
_________________
Test confidently with gmatprepnow.com



Intern
Joined: 03 Dec 2010
Posts: 21

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
02 Mar 2012, 00:29
priyalr wrote: I got a doubt. In 306090 rule, side opp to 60 is sqrt3* side opp 30 isn't it ? So with that rule if angle CAB is 306090 triangle, whr AB=5 as angle ACB is 90, then angle CBA is 30, so its length is AC= 5/2, and angle is CAB is 60 degree, CB= sqrt3* 5/2. So since CB & BE are of same length (acc to your explnt) then CB+BE = Sqrt3*5/2 + Sqrt3*5/2 = sqrt3*5 . hence, I get ans as C.
Pls explain. thnx a ton. My bad ! I want to give my exam by APril end. I have studied the quant notes for this specific topic and leter solve the PS q, for the given topic. The problem is I get stuck at the start or in middle of my solving. I seem to not apply the concepts learned on to the q. What shld i do ?



Manager
Joined: 02 Nov 2009
Posts: 95

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
01 Jul 2012, 22:22
Bunuel This is the only part that alvvays troubles me right triangle (AB=diameter means that <C=90) Hovv I knovv angle at center subtended by diameter is 90 but cant form it here please explain Bunuel wrote: enigma123 wrote: In the figure, circle O has center O, diameter AB and a radius of 5. Line CD is parallel to the diameter. What is the perimeter of the shaded region? A. (5/3)pi + 5√3 B. (5/3) pi + 10√3 C. (10/3) pi + 5√3 D. (10/3) pi + 10√3 E. (10/3) pi + 20√3 Attachment: Perimeter.PNG Since CD is parallel to AB then <CBA=<BCD=30 > <CBE=60 > <COE=2*60=120 (according to the central angle theorem) > length of minor arc CE is \(\frac{120}{360}*2\pi{r}=\frac{10}{3}*\pi\); Now, we should find the lengths of BC and BE ( notice that they are equal). Since <CBA=30 then triangle ACB is 306090 right triangle (AB=diameter means that <C=90), thus \(\frac{BC}{AB}=\frac{\sqrt{3}}{2}\), (BC is opposite to 60 degrees so corresponds to \(\sqrt{3}\)) > \(\frac{BC}{10}=\frac{\sqrt{3}}{2}\) (AB=diameter=2r=10) > \(BC=5\sqrt{3}\); Thus the perimeter of the shaded region is (minor arc CE)+BC+BE: \(\frac{10}{3}*\pi+5\sqrt{3}+5\sqrt{3}=\frac{10}{3}*\pi+10\sqrt{3}\). Answer: D.



Math Expert
Joined: 02 Sep 2009
Posts: 58988

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
02 Jul 2012, 01:28
venmic wrote: Bunuel This is the only part that alvvays troubles me right triangle (AB=diameter means that <C=90) Hovv I knovv angle at center subtended by diameter is 90 but cant form it here please explain Bunuel wrote: enigma123 wrote: In the figure, circle O has center O, diameter AB and a radius of 5. Line CD is parallel to the diameter. What is the perimeter of the shaded region? A. (5/3)pi + 5√3 B. (5/3) pi + 10√3 C. (10/3) pi + 5√3 D. (10/3) pi + 10√3 E. (10/3) pi + 20√3 Attachment: The attachment Perimeter.PNG is no longer available Since CD is parallel to AB then <CBA=<BCD=30 > <CBE=60 > <COE=2*60=120 (according to the central angle theorem) > length of minor arc CE is \(\frac{120}{360}*2\pi{r}=\frac{10}{3}*\pi\); Now, we should find the lengths of BC and BE ( notice that they are equal). Since <CBA=30 then triangle ACB is 306090 right triangle (AB=diameter means that <C=90), thus \(\frac{BC}{AB}=\frac{\sqrt{3}}{2}\), (BC is opposite to 60 degrees so corresponds to \(\sqrt{3}\)) > \(\frac{BC}{10}=\frac{\sqrt{3}}{2}\) (AB=diameter=2r=10) > \(BC=5\sqrt{3}\); Thus the perimeter of the shaded region is (minor arc CE)+BC+BE: \(\frac{10}{3}*\pi+5\sqrt{3}+5\sqrt{3}=\frac{10}{3}*\pi+10\sqrt{3}\). Answer: D. Look at the diagram below: Attachment:
Circletr.png [ 7.39 KiB  Viewed 68915 times ]
Hope it helps.
_________________



Intern
Joined: 23 Jul 2013
Posts: 18

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
27 Sep 2013, 04:42
Hi Bunuel, 1 doubt.. when you calculated length of the arc CE, why you used angle as 120 degree, why not 60 degree...??
Thanks



Math Expert
Joined: 02 Sep 2009
Posts: 58988

Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
Show Tags
27 Sep 2013, 04:47
ishdeep18 wrote: Hi Bunuel, 1 doubt.. when you calculated length of the arc CE, why you used angle as 120 degree, why not 60 degree...??
Thanks Arc CE is a part of the circumference > central angle COE is 120 degrees > a central angle in a circle determines an arc. For more check here: mathcircles87957.htmlHope this helps.
_________________




Re: In the figure, circle O has center O, diameter AB and a radius of 5.
[#permalink]
27 Sep 2013, 04:47



Go to page
1 2 3
Next
[ 41 posts ]



