GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 14 Nov 2018, 08:21

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in November
PrevNext
SuMoTuWeThFrSa
28293031123
45678910
11121314151617
18192021222324
2526272829301
Open Detailed Calendar
• ### Free GMAT Strategy Webinar

November 17, 2018

November 17, 2018

07:00 AM PST

09:00 AM PST

Nov. 17, 7 AM PST. Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.

# In the figure shown, two identical squares are inscribed in

Author Message
TAGS:

### Hide Tags

Manager
Joined: 06 Apr 2010
Posts: 117
In the figure shown, two identical squares are inscribed in  [#permalink]

### Show Tags

Updated on: 17 Sep 2012, 23:54
6
15
00:00

Difficulty:

45% (medium)

Question Stats:

70% (02:10) correct 30% (02:46) wrong based on 476 sessions

### HideShow timer Statistics

In the figure shown, two identical squares are inscribed in the rectangle. If the perimeter of the rectangle is 18√2, then what is the perimeter of each square?
Attachment:

Rectangle.png [ 19.46 KiB | Viewed 21185 times ]

A. 8√2
B. 12
C. 12√2
D. 16
E. 18

Originally posted by udaymathapati on 27 Aug 2010, 22:01.
Last edited by Bunuel on 17 Sep 2012, 23:54, edited 1 time in total.
Edited the question.
Math Expert
Joined: 02 Sep 2009
Posts: 50583

### Show Tags

28 Aug 2010, 06:45
13
3
udaymathapati wrote:
In the figure attached (refer file), two identical squares are inscribed in the rectangle. If the perimeter of the rectangle is 18√2, then what is the perimeter of each square?
A. 8√2
B. 12
C. 12√2
D. 16
E. 18

The rectangle's $$width=d$$ and $$length=2d$$, where $$d$$ is the diagonal of each square.

$$P_{rectangle}=2(d+2d)=18\sqrt{2}$$ --> $$d=3\sqrt{2}$$.

Now, $$d^2=s^2+s^2$$, where $$s$$ is the side of a square --> $$d^2=(3\sqrt{2})^2=18=2s^2$$ --> $$s=3$$ --> $$P_{square}=4s=12$$.

_________________
##### General Discussion
Intern
Joined: 24 Aug 2010
Posts: 5

### Show Tags

28 Aug 2010, 06:45
2
1
Hello

Let's name:

A width of the rectangle (the biggest line)
B height of the rectangle (the smallest line)
C width of the square

We know that 2 (A + B) = 18√2, so A + B = 9√2

We can also infer that A = 2B since A = 2 diagonal of the square and B = 1 diagonal of the square (see it on the figure to understand it more easily)

A = 3√2 and B = 6√2

From Pythagor, we have C² + C² = B²
<=> 2c² = (3√2)²
<=> 2c² = 9 * 2
<=> C = 3

So the perimeter of each square is 4 * 3 = 12
Manager
Joined: 09 Jun 2010
Posts: 103

### Show Tags

28 Aug 2010, 06:49
let each square is with side a & diagonal b. hence a = 1/\sqrt{2}b.
b is breadth of the bigger rectangle & 2b is the length of the rectangle.

perimeter of the rectangle is 2X(2b+b) = 6b = 18\sqrt{2}
b = 3\sqrt{2}

=> a = 3.
perimeter of each square = 12.

Attachments

Square within Rectangle.docx [17.79 KiB]

Retired Moderator
Joined: 16 Nov 2010
Posts: 1429
Location: United States (IN)
Concentration: Strategy, Technology

### Show Tags

19 Apr 2011, 17:09
l+b = 9root(2) (l - length of rectange, b - breadth of rectangle)

Also, 2d + d = 9root(2) (d = Diagonal of square)

d = 3root(2)

Side of square = 3, so permieter = 4 * 3 = 12

_________________

Formula of Life -> Achievement/Potential = k * Happiness (where k is a constant)

GMAT Club Premium Membership - big benefits and savings

Manager
Joined: 30 Sep 2009
Posts: 93

### Show Tags

17 Sep 2012, 21:15
2
1
dineesha wrote:
In the figure shown, two identical squares are inscribed in the rectangle. If the perimeter of the
rectangle is 18\sqrt{2}, then what is the perimeter of each square?

A. 8\sqrt{2}
B. 12
C. 12\sqrt{2}
D. 16
E. 18

Please see figure in the attached file.

PERIMETER=2(A+B) WHERE A AND B ARE TWO SIDES OF THE RECTANGLE.....
A --> THE LENGTH

AS THE TWO SQUARES ARE IDENTICAL THE DIAGONALS ARE EQUAL TO B . THEREFORE A=2B ..

ON EQUATING WE WILL GET THE ANSWER
Manager
Joined: 28 Feb 2012
Posts: 112
GPA: 3.9
WE: Marketing (Other)
Re: In the figure shown, two identical squares are inscribed in  [#permalink]

### Show Tags

26 Sep 2012, 00:40
Interesting questions and i like such questions.
Since diagonal of the square is equal to side of the square*sqrt2 then we have one side of the reqtangle is equal to two diagonal of the square and another side of the rectangle is equal to one diagonal. All the sides (perimiter) are equal to 6 diagonals. So the side of the square is equal to 18\sqrt{2}/6\sqrt{2}=3. Then perimiter of the square 3*4=12
_________________

If you found my post useful and/or interesting - you are welcome to give kudos!

Senior Manager
Joined: 13 Aug 2012
Posts: 431
Concentration: Marketing, Finance
GPA: 3.23
Re: In the figure shown, two identical squares are inscribed in  [#permalink]

### Show Tags

26 Sep 2012, 01:25
3
1
Attachments

solution mixture.jpg [ 31.89 KiB | Viewed 20278 times ]

_________________

Impossible is nothing to God.

SVP
Joined: 06 Sep 2013
Posts: 1745
Concentration: Finance
Re: In the figure shown, two identical squares are inscribed in  [#permalink]

### Show Tags

21 Nov 2013, 13:45
udaymathapati wrote:
In the figure shown, two identical squares are inscribed in the rectangle. If the perimeter of the rectangle is 18√2, then what is the perimeter of each square?
Attachment:
Rectangle.png

A. 8√2
B. 12
C. 12√2
D. 16
E. 18

If y'all take a look you can tell that the length + width is equal to 3 diagonals of the square.
Therefore, Since 2(x+y) = 18 sqrt (2) then x+y = 9 sqrt (2)
Now as stated before we have 3s sqrt (2) = 9 sqrt (2)
s = 3, 's' stands for side of the square.
Perimeter = 12

Hope it helps
Kudos rain!
Cheers
J
Manager
Joined: 13 Jul 2013
Posts: 66
GMAT 1: 570 Q46 V24

### Show Tags

03 Jan 2014, 06:23
Bunuel wrote:
udaymathapati wrote:
In the figure attached (refer file), two identical squares are inscribed in the rectangle. If the perimeter of the rectangle is 18√2, then what is the perimeter of each square?
A. 8√2
B. 12
C. 12√2
D. 16
E. 18

The rectangle's $$width=d$$ and $$length=2d$$, where $$d$$ is the diagonal of each square.

$$P_{rectangle}=2(d+2d)=18\sqrt{2}$$ --> $$d=3\sqrt{2}$$.

Now, $$d^2=s^2+s^2$$, where $$s$$ is the side of a square --> $$d^2=(3\sqrt{2})^2=18=2s^2$$ --> $$s=3$$ --> $$P_{square}=4s=12$$.

Can I please ask why the width is D and length 2D?

Thank You
Math Expert
Joined: 02 Sep 2009
Posts: 50583

### Show Tags

03 Jan 2014, 06:31
theGame001 wrote:
Bunuel wrote:
udaymathapati wrote:
In the figure attached (refer file), two identical squares are inscribed in the rectangle. If the perimeter of the rectangle is 18√2, then what is the perimeter of each square?
A. 8√2
B. 12
C. 12√2
D. 16
E. 18

The rectangle's $$width=d$$ and $$length=2d$$, where $$d$$ is the diagonal of each square.

$$P_{rectangle}=2(d+2d)=18\sqrt{2}$$ --> $$d=3\sqrt{2}$$.

Now, $$d^2=s^2+s^2$$, where $$s$$ is the side of a square --> $$d^2=(3\sqrt{2})^2=18=2s^2$$ --> $$s=3$$ --> $$P_{square}=4s=12$$.

Can I please ask why the width is D and length 2D?

Thank You

The length is twice the width, so if $$width=d$$, then $$length=2d$$.
_________________
Manager
Joined: 13 Jul 2013
Posts: 66
GMAT 1: 570 Q46 V24

### Show Tags

03 Jan 2014, 06:35
Bunuel wrote:

The length is twice the width, so if $$width=d$$, then $$length=2d$$.

This may sound a silly question but where is it stated that Length is twice the width? Is this a property of rectangle?
Math Expert
Joined: 02 Sep 2009
Posts: 50583

### Show Tags

03 Jan 2014, 06:43
1
theGame001 wrote:
Bunuel wrote:

The length is twice the width, so if $$width=d$$, then $$length=2d$$.

This may sound a silly question but where is it stated that Length is twice the width? Is this a property of rectangle?

Not all rectangles have the ratio of width to length as 1 to 2.

From the figure we can see that the width equals to the diagonal of the inscribed square and the length equals to the two diagonals.
_________________
SVP
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1827
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Re: In the figure shown, two identical squares are inscribed in  [#permalink]

### Show Tags

02 Sep 2014, 19:48
Perimeter of rectangle$$= 18\sqrt{2}$$

Lets say one side = x

other side $$= 9\sqrt{2} - x$$

When we divide the rectangle (as shown in fig), two squares would be formed

one side = x; other side $$= \frac{9\sqrt{2}}{2} - \frac{x}{2}$$

As square ABCD is formed, both sides should be equal

$$x = \frac{9\sqrt{2}}{2} - \frac{x}{2}$$

$$x = 3\sqrt{2}$$

Area of Square ABCD$$= 3\sqrt{2} * 3\sqrt{2} = 18$$

Area of inscribed square PQRS $$= \frac{1}{2} * 18 = 9$$ (This is a thumb rule/property for inscribed square)

Length of a side of square PQRS $$= \sqrt{9} = 3$$

Perimeter of square PQRS= 3 * 4 = 12

Attachments

Rectangle.png [ 29 KiB | Viewed 18413 times ]

_________________

Kindly press "+1 Kudos" to appreciate

Director
Status: Professional GMAT Tutor
Affiliations: AB, cum laude, Harvard University (Class of '02)
Joined: 10 Jul 2015
Posts: 669
Location: United States (CA)
Age: 38
GMAT 1: 770 Q47 V48
GMAT 2: 730 Q44 V47
GMAT 3: 750 Q50 V42
GRE 1: Q168 V169
WE: Education (Education)
Re: In the figure shown, two identical squares are inscribed in  [#permalink]

### Show Tags

12 Apr 2016, 19:55
Attached is a visual that should help.
Attachments

Screen Shot 2016-04-12 at 8.54.23 PM.png [ 131.08 KiB | Viewed 15009 times ]

_________________

Harvard grad and 99% GMAT scorer, offering expert, private GMAT tutoring and coaching worldwide since 2002.

One of the only known humans to have taken the GMAT 5 times and scored in the 700s every time (700, 710, 730, 750, 770), including verified section scores of Q50 / V47, as well as personal bests of 8/8 IR (2 times), 6/6 AWA (4 times), 50/51Q and 48/51V (1 question wrong).

You can download my official test-taker score report (all scores within the last 5 years) directly from the Pearson Vue website: https://tinyurl.com/y94hlarr Date of Birth: 09 December 1979.

GMAT Action Plan and Free E-Book - McElroy Tutoring

Contact: mcelroy@post.harvard.edu (I do not respond to PMs on GMAT Club.)

...or find me on Reddit: http://www.reddit.com/r/GMATpreparation

Director
Joined: 04 Jun 2016
Posts: 569
GMAT 1: 750 Q49 V43
In the figure shown, two identical squares are inscribed in  [#permalink]

### Show Tags

30 Jul 2016, 05:07
2
udaymathapati wrote:
In the figure shown, two identical squares are inscribed in the rectangle. If the perimeter of the rectangle is 18√2, then what is the perimeter of each square?
Attachment:
The attachment Rectangle.png is no longer available

A. 8√2
B. 12
C. 12√2
D. 16
E. 18

Given $$2l+2b=18√2$$
$$l+b=9√2$$ {equation 1}

As seen in the diagram that length of the RECTANGLE is diagonal + diagonal OF SQUARE ; length = $$2d$$
As seen in the diagram that breadth of the RECTANGLE is diagonal of the SQUARE =$$d$$
As seen in the diagram the side of the square is $$x$$

Substituting these values in equation 1 gives us
$$2d+d=9√2$$
$$3d=9√2$$
$$d=3√2$$ so the diagonal of the square is $$3√2$$
now $$side^2 + side^2 = diagonal ^2$$ {simple pythagorus theorum}
$$x^2+x^2= (3√2)^2$$

$$2x^2= 9*2=18$$

$$x^2=\frac{18}{2} = 9$$

$$x=\sqrt{9}$$

$$x= 3$$the side of the square is 3 therefore its perimeter is 3*4=12

Attachments

Rectangle.png [ 101.26 KiB | Viewed 13926 times ]

_________________

Posting an answer without an explanation is "GOD COMPLEX". The world doesn't need any more gods. Please explain you answers properly.
FINAL GOODBYE :- 17th SEPTEMBER 2016. .. 16 March 2017 - I am back but for all purposes please consider me semi-retired.

Intern
Joined: 26 Jun 2015
Posts: 37
Location: India
Concentration: Entrepreneurship, General Management
WE: Engineering (Energy and Utilities)
Re: In the figure shown, two identical squares are inscribed in  [#permalink]

### Show Tags

02 Jul 2017, 04:35
I solved it in a very easy way.
Lets take side of square is x. You can see from figure, two diagonals of squares = length of rectangle.
And one diagonal of square = width of rectangle.
So, as Length x Width = 36,
we can say (2 * root2x)* (root2x) = 36
x = 3
Perimeter of square = 12

Non-Human User
Joined: 09 Sep 2013
Posts: 8773
Re: In the figure shown, two identical squares are inscribed in  [#permalink]

### Show Tags

29 Jul 2018, 07:40
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: In the figure shown, two identical squares are inscribed in &nbs [#permalink] 29 Jul 2018, 07:40
Display posts from previous: Sort by