GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 22 Feb 2019, 03:15

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in February
PrevNext
SuMoTuWeThFrSa
272829303112
3456789
10111213141516
17181920212223
242526272812
Open Detailed Calendar
• ### Free GMAT RC Webinar

February 23, 2019

February 23, 2019

07:00 AM PST

09:00 AM PST

Learn reading strategies that can help even non-voracious reader to master GMAT RC. Saturday, February 23rd at 7 AM PT
• ### FREE Quant Workshop by e-GMAT!

February 24, 2019

February 24, 2019

07:00 AM PST

09:00 AM PST

Get personalized insights on how to achieve your Target Quant Score.

# In the rectangular coordinate system Point O has coordinates

Author Message
TAGS:

### Hide Tags

Senior Manager
Joined: 07 Sep 2010
Posts: 258
In the rectangular coordinate system Point O has coordinates  [#permalink]

### Show Tags

11 Jun 2013, 06:56
1
13
00:00

Difficulty:

(N/A)

Question Stats:

61% (02:44) correct 39% (02:48) wrong based on 216 sessions

### HideShow timer Statistics

In the rectangular coordinate system Point O has coordinates (0,0) and Point B has coordinates (4,4) and if point A is equidistant from points O and B and the area of the triangle OAB is 16, which of the following are the possible coordinates of point A.

A. (-2,6)
B. (0,4)
C. (2,-6)
D. (2,6)
E. (4,0)
Math Expert
Joined: 02 Sep 2009
Posts: 53066
In the rectangular coordinate system Point O has coordinates  [#permalink]

### Show Tags

11 Jun 2013, 07:13
2
6
imhimanshu wrote:
In the rectangular coordinate system Point O has coordinates (0,0) and Point B has coordinates (4,4) and if point A is equidistant from points O and B and the area of the triangle OAB is 16, which of the following are the possible coordinates of point A.

A. (-2,6)
B. (0,4)
C. (2,-6)
D. (2,6)
E. (4,0)

Look at the diagram below:

Since A is equidistant from points O and B, then it must be somewhere on the green line (perpendicular bisector of OB).

(2,-6) and (2,6) are not on that line. If A is at (0,4) or (4,0), then the area is 1/2*4*4=8. Thus A must be at (-2,6).

Hope it's clear.

Attachment:

Area.png [ 11.71 KiB | Viewed 5227 times ]

_________________
##### General Discussion
Verbal Forum Moderator
Joined: 10 Oct 2012
Posts: 611
Re: In the rectangular coordinate system Point O has coordinates  [#permalink]

### Show Tags

11 Jun 2013, 08:52
1
2
imhimanshu wrote:
In the rectangular coordinate system Point O has coordinates (0,0) and Point B has coordinates (4,4) and if point A is equidistant from points O and B and the area of the triangle OAB is 16, which of the following are the possible coordinates of point A.

A. (-2,6)
B. (0,4)
C. (2,-6)
D. (2,6)
E. (4,0)

Assuming the base of the triangle as OB, which is of length $$4\sqrt{2}$$, and let the height from A to OB be h-->

$$\frac{1}{2}*4\sqrt{2}*h$$ = 16 --> h = $$4\sqrt{2}$$. Also, as the point A is equidistant from both O and B, the point A will lie on the perpendicular bisector of the triangle OAB. Thus, h = the distance between the co-ordinates of A and (2,2)[the mid point of the line segment OB]. Only A satisfies for h = $$4\sqrt{2}$$
A.
_________________
Manager
Status: Training
Joined: 03 Jun 2013
Posts: 89
GPA: 3.7
Re: In the rectangular coordinate system Point O has coordinates  [#permalink]

### Show Tags

11 Jun 2013, 15:20
1
imhimanshu wrote:
why it is necessary that point A must lie on perpendicular of OB

Hey,

Are you familiar with the term 'equidistant', meaning that the distance between OA and AB must be the same?

Imagine that A is some point that lies on the line OB, and A is equidistant from both points. Then A would have to be the midpoint of OB.

Now, extending that idea to find all points that are equidistant from O and B, if you try to plot a few points, you will see that they form a line that intersects the midpoint of OB, and extends to infinite, perpendicular to OB.

Hope that helps a little.
_________________

KUDOS please if my post was useful!

Manager
Joined: 16 Oct 2012
Posts: 50
Re: In the rectangular coordinate system Point O has coordinates  [#permalink]

### Show Tags

11 Jun 2013, 15:32
There are three equidistant point:

(0, 4); (4,0); (-2;6)

Only the last one fulfills the area requirement!
Manager
Joined: 13 Aug 2012
Posts: 93
Re: In the rectangular coordinate system Point O has coordinates  [#permalink]

### Show Tags

02 Aug 2013, 09:18
1
another way the question can be solved is by using the distance forumula
Since, $$AO=AB$$, their distance will be the same, therefore by using the formula we get $$x^2+y^2=(x-4)^2+(y-4)^2$$
Solving the above equation, we get $$x+y=4$$. Now the only option that satisfies this equation is A.

Hope this helps
Manager
Joined: 13 Aug 2012
Posts: 93
Re: In the rectangular coordinate system Point O has coordinates  [#permalink]

### Show Tags

02 Aug 2013, 09:24
Bunuel wrote:
imhimanshu wrote:
In the rectangular coordinate system Point O has coordinates (0,0) and Point B has coordinates (4,4) and if point A is equidistant from points O and B and the area of the triangle OAB is 16, which of the following are the possible coordinates of point A.

A. (-2,6)
B. (0,4)
C. (2,-6)
D. (2,6)
E. (4,0)

Look at the diagram below:
Attachment:
Area.png
Since A is equidistant from points O and B, then it must be somewhere on the green line (perpendicular bisector of OB).

(2,-6) and (2,6) are not on that line. If A is at (0,4) or (4,0), then the area is 1/2*4*4=8. Thus A must be at (-2,6).

Hope it's clear.

I was wondering, since we wouldn't be provided with a graph paper and can only draw a rough figure, how would one exactly come to know the middle point of the line OB?
Manager
Joined: 22 Feb 2016
Posts: 89
Location: India
Concentration: Economics, Healthcare
GMAT 1: 690 Q42 V47
GMAT 2: 710 Q47 V39
GPA: 3.57
Re: In the rectangular coordinate system Point O has coordinates  [#permalink]

### Show Tags

15 Oct 2016, 20:16
Another way of solving this.

When we draw the given senerio we realise for A to be equidistant to both o and B it needs to be on the 2nd or 4th quadrant. only option in the second quadrant is A

hence A
CEO
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2798
Location: India
GMAT: INSIGHT
Schools: Darden '21
WE: Education (Education)
Re: In the rectangular coordinate system Point O has coordinates  [#permalink]

### Show Tags

15 Oct 2016, 21:09
AmritaSarkar89 wrote:
Another way of solving this.

When we draw the given senerio we realise for A to be equidistant to both o and B it needs to be on the 2nd or 4th quadrant. only option in the second quadrant is A

hence A

There is an option which shows a point in 4th Quadrant (which one should notice even if one goes by quick observation like you have shown) however that is much closer to O than point B so that can't be the correct option.

Your approach is really good. exactly like one needed in any aptitude test. Overlooking option would be too bad for anyone taking GMAT
_________________

Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

ACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION

Non-Human User
Joined: 09 Sep 2013
Posts: 9886
Re: In the rectangular coordinate system Point O has coordinates  [#permalink]

### Show Tags

16 Feb 2019, 11:44
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: In the rectangular coordinate system Point O has coordinates   [#permalink] 16 Feb 2019, 11:44
Display posts from previous: Sort by