It is currently 17 Nov 2017, 18:13

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Inequality and absolute value questions from my collection

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
103 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42248

Kudos [?]: 132517 [103], given: 12324

Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 16 Nov 2009, 11:33
103
This post received
KUDOS
Expert's post
600
This post was
BOOKMARKED
Guys I didn't forget your request, just was collecting good questions to post.

So here are some inequality and absolute value questions from my collection. Not every problem below is hard, but there are a few, which are quite tricky. Please provide your explanations along with the answers.

1. If \(6*x*y = x^2*y + 9*y\), what is the value of xy?
(1) \(y – x = 3\)
(2) \(x^3< 0\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653690

2. If y is an integer and \(y = |x| + x\), is \(y = 0\)?
(1) \(x < 0\)
(2) \(y < 1\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653695

3. Is \(x^2 + y^2 > 4a\)?
(1) \((x + y)^2 = 9a\)
(2) \((x – y)^2 = a\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653697

4. Are x and y both positive?
(1) \(2x-2y=1\)
(2) \(\frac{x}{y}>1\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653709

5. What is the value of y?
(1) \(3|x^2 -4| = y - 2\)
(2) \(|3 - y| = 11\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653731

6. If x and y are integer, is y > 0?
(1) \(x +1 > 0\)
(2) \(xy > 0\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653740

7. \(|x+2|=|y+2|\) what is the value of x+y?
(1) \(xy<0\)
(2) \(x>2\), \(y<2\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653783 AND http://gmatclub.com/forum/inequality-an ... l#p1111747

8. \(a*b \neq 0\). Is \(\frac{|a|}{|b|}=\frac{a}{b}\)?
(1) \(|a*b|=a*b\)
(2) \(\frac{|a|}{|b|}=|\frac{a}{b}|\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653789

9. Is n<0?
(1) \(-n=|-n|\)
(2) \(n^2=16\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653792

10. If n is not equal to 0, is |n| < 4 ?
(1) \(n^2 > 16\)
(2) \(\frac{1}{|n|} > n\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653796

11. Is \(|x+y|>|x-y|\)?
(1) \(|x| > |y|\)
(2) \(|x-y| < |x|\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653853

12. Is r=s?
(1) \(-s \leq r \leq s\)
(2) \(|r| \geq s\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653870

13. Is \(|x-1| < 1\)?
(1) \((x-1)^2 \leq 1\)
(2) \(x^2 - 1 > 0\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653886

Official answers (OA's) and detailed solutions are in my posts on pages 2 and 3.


PLEASE READ THE WHOLE DISCUSSION BEFORE POSTING A QUESTION.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132517 [103], given: 12324

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42248

Kudos [?]: 132517 [1], given: 12324

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 25 Jun 2012, 02:03
1
This post received
KUDOS
Expert's post
kuttingchai wrote:
Bunuel wrote:
13. Is |x-1| < 1?
(1) (x-1)^2 <= 1
(2) x^2 - 1 > 0

Last one.

Is |x-1| < 1? Basically the question asks is 0<x<2 true?

(1) (x-1)^2 <= 1 --> x^2-2x<=0 --> x(x-2)<=0 --> 0<=x<=2. x is in the range (0,2) inclusive. This is the trick here. x can be 0 or 2! Else it would be sufficient. So not sufficient.

(2) x^2 - 1 > 0 --> x<-1 or x>1. Not sufficient.

(1)+(2) Intersection of the ranges from 1 and 2 is 1<x<=2. Again 2 is included in the range, thus as x can be 2, we can not say for sure that 0<x<2 is true. Not sufficient.

Answer: E.



Can you please explain : --> how did u derive --> "x(x-2)<=0 --> 0<=x<=2. x is in the range (0,2) inclusive" ???

Here is what i did

Question: |x-1| < 1
critical point x>1 or x<1

when x>1 then (x-1)<1 x<2
when x<1 then -(x-1)<1 -x<0 therefore x>0
to prove 0<x<2 --? [understood this]

(A)(x-1)^2 <= 1
x^2 - 2x + 1 <= 1
x (x-2) <= 0 [can you please explain after this who did you derive 0<=x<=2 ===?????]

my thoughts [what m i doing wrong??]
when (x = 0) then x-2<=0 therefoe x<=2
when (x-2 = 0) then x<=0 ????? i am confused here ?????


(B) x^2-1>0 therefore we have x>1 or x<-1 - not sufficient [understood this]

Thank you


Check the following links:
x2-4x-94661.html#p731476 (check this one first)
inequalities-trick-91482.html
everything-is-less-than-zero-108884.html?hilit=extreme#p868863
xy-plane-71492.html?hilit=solving%20quadratic#p841486
data-suff-inequalities-109078.html
range-for-variable-x-in-a-given-inequality-109468.html?hilit=extreme#p873535

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132517 [1], given: 12324

1 KUDOS received
Manager
Manager
avatar
Joined: 19 Oct 2011
Posts: 128

Kudos [?]: 478 [1], given: 33

Location: India
Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 25 Aug 2012, 07:26
1
This post received
KUDOS
Bunuel wrote:
SOLUTIONS:

1. If 6*x*y = x^2*y + 9*y, what is the value of xy?
(1) y – x = 3
(2) x^3< 0

First let's simplify given expression \(6*x*y = x^2*y + 9*y\):

\(y*(x^2-6x+9)=0\) --> \(y*(x-3)^2=0\). Note here that we CAN NOT reduce this expression by \(y\), as some of you did. Remember we are asked to determine the value of \(xy\), and when reducing by \(y\) you are assuming that \(y\) doesn't equal to \(0\). We don't know that.

Next: we can conclude that either \(x=3\) or/and \(y=0\). Which means that \(xy\) equals to 0, when y=0 and x any value (including 3), OR \(xy=3*y\) when y is not equal to zero, and x=3.

(1) \(y-x=3\). If y is not 0, x must be 3 and y-x to be 3, y must be 6. In this case \(xy=18\). But if y=0 then x=-3 and \(xy=0\). Two possible scenarios. Not sufficient.

OR:

\(y-x=3\) --> \(x=y-3\) --> \(y*(x-3)^2=y*(y-3-3)^2=y(y-6)^2=0\) --> either \(y=0\) or \(y=6\) --> if \(y=0\), then \(x=-3\) and \(xy=0\) \(or\) if \(y=6\), then \(x=3\) and \(xy=18\). Two different answers. Not sufficient.

(2) \(x^3<0\). x is negative, hence x is not equals to 3, hence y must be 0. So, xy=0. Sufficient.

Answer: B.



The answer to this one is C right? B alone is not sufficient.
_________________

Encourage me by pressing the KUDOS if you find my post to be helpful.



Help me win "The One Thing You Wish You Knew - GMAT Club Contest"
http://gmatclub.com/forum/the-one-thing-you-wish-you-knew-gmat-club-contest-140358.html#p1130989

Kudos [?]: 478 [1], given: 33

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42248

Kudos [?]: 132517 [1], given: 12324

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 04 Oct 2012, 04:00
1
This post received
KUDOS
Expert's post
carcass wrote:
Bunuel I have very clear the 1 statement but not so much the secon one : 1/|n|< n this is true only for negative value. So we could have i. e. : -1 or -6 so insuff but how we you arrive to this conclusion: :?: :?



Given: 1/|n| > n. Now, 1/|n| is always positive (because of the absolute value in the denominator), so if n is negative then this inequality will always hold true: 1/|n|=positive>n=negative.

Hope it's clear.

P.S. Complete solution for 1/|n| > n is n<0 or 0<n<1.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132517 [1], given: 12324

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42248

Kudos [?]: 132517 [1], given: 12324

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 04 Oct 2012, 04:20
1
This post received
KUDOS
Expert's post
carcass wrote:
Correct me if I'm wrong because the concepts are always the same but the gmat blonds them and as consequence blow your mind.

in other words, you are saying

1/|n| > n 2 cases

1/-n > n ----> n^2 > -1 this implies that any squared number is positive and therefore greater than -1, all negative n values work as solutions. your n < 0

1/n > n -----> 1 > n^2 ----> n^ 2 < 1 --------> -1 < n < 1 . your second range. so in the end we have all this information and we are not sure of course of - 4 < n < 4.

Correct ???

Thanks


1/|n| > n --> 2 cases:

If n<0, then |n|=-n, so we'll have that 1/-n>n --> multiply by n and flip the sign (since we consider negative n): -1<n^2 --> which holds true for any n from this range, so for any negative n.

If n>0, then |n|=n, so we'll have that 1/n>n --> multiply by positive n, this time: 1>n^2 --> -1<n<1, since we consider n>0, then finally we'll get 0<n<1.

So, 1/|n| > n holds true for n<0 and 0<n<1.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132517 [1], given: 12324

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42248

Kudos [?]: 132517 [1], given: 12324

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 22 Feb 2013, 01:27
1
This post received
KUDOS
Expert's post
JJ2014 wrote:
Bunuel wrote:
5. What is the value of y?
(1) 3|x^2 -4| = y - 2
(2) |3 - y| = 11

(1) As we are asked to find the value of y, from this statement we can conclude only that y>=2, as LHS is absolute value which is never negative, hence RHS als can not be negative. Not sufficient.

(2) |3 - y| = 11:

y<3 --> 3-y=11 --> y=-8
y>=3 --> -3+y=11 --> y=14

Two values for y. Not sufficient.

(1)+(2) y>=2, hence y=14. Sufficient.

Answer: C.


Bunuel, I think I need some conceptual help. Why should we not solve statement 1 by rewriting the two statements and then adding them together? (Besides the fact that it's time consuming....) I rewrote them and found 3x^2 -10 = y for the positive absolute vlaue, and -3x^2+14=y for the negative abs value. From this, I added them together and got y=4..

Can you please explain what I'm getting wrong conceptually? Thanks so much!!!! I appreciate your kindness.


|x^2-4|=x^2-4 when x^2-4>0;
|x^2-4|=-(x^2-4) when x^2-4<=0.

So, the two equations you'll get from the original are relevant for different ranges of x. Hence, you cannot consider them as two separate equations and solve.

To put it simply: we cannot get the single value of y from 3|x^2 -4| = y - 2. Consider y=2 and x=2 OR y=11 and x=1.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132517 [1], given: 12324

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42248

Kudos [?]: 132517 [1], given: 12324

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 28 Feb 2013, 06:42
1
This post received
KUDOS
Expert's post
piealpha wrote:
7. |x+2|=|y+2| what is the value of x+y?
(1) xy<0
(2) x>2 y<2

The solution seem confusing to me as I see four cases:
a] x<-2, y<-2
b]x>-2, y>-2
c] x<-2, y>-2
d]x>-2, y<-2

case [a] and [b] support x=y while case [c] and [d] support x+y=-4

when xy<0, the case [c]or[d] always do not apply, for example: x=-3 and y=3 would come under case[c] and x=-1 and y=3 would come under case [b] , so it is insufficient.

when x>2 , y<2, we have a case [b] with x=3, y=-1 and a case [d] with x=3,y=-3. So insufficient

when we combine(1)+(2) , we have a case as shown above , it is also insufficient.

So my answer choice would be E.

Can somebody help if I am wrong.


Please read the thread: 11 pages of good discussion.

Links to OA's and solutions are given in the original post: inequality-and-absolute-value-questions-from-my-collection-86939-200.html#p652806

OA for this question is D, not E. Discussed here: inequality-and-absolute-value-questions-from-my-collection-86939-40.html#p653783 and here: inequality-and-absolute-value-questions-from-my-collection-86939-160.html#p1111747

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132517 [1], given: 12324

1 KUDOS received
Intern
Intern
avatar
Joined: 10 Aug 2012
Posts: 19

Kudos [?]: 6 [1], given: 15

Location: India
Concentration: General Management, Technology
GPA: 3.96
Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 28 Feb 2013, 08:36
1
This post received
KUDOS
Question 1:

\(6xy = x^2 y + 9y\)

\(y(x^2 -6x +9) = 0\)

\(y(x-3)^2 = 0\)

either y =0, or x=3

statement 1: y-x =3
If y= 0, xy =0, irrespective of x
If x=3, y =6, xy= 18

So, A & D are not correct

statement 2:

\(x^3 < 0 => x <0\)

=> x is not equal to 3 so y=0, and xy = 0

Correct Answer B

Kudos [?]: 6 [1], given: 15

1 KUDOS received
Intern
Intern
avatar
Joined: 05 May 2013
Posts: 27

Kudos [?]: 23 [1], given: 5

GMAT 1: 730 Q50 V39
GRE 1: 1480 Q800 V680
Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 11 Jul 2013, 21:42
1
This post received
KUDOS
Hi johncoffey ,
My two cents- for (1) - it is always useful to start out by factoring an expression if possible, especially when there is a variable in common ("y" in this example). Even though it does make sense to isolate the expression "xy" that we are being asked for- note that in this case that would give us more unknowns on the RHS.
Hope tht helps.

Kudos [?]: 23 [1], given: 5

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42248

Kudos [?]: 132517 [1], given: 12324

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 22 Sep 2013, 06:00
1
This post received
KUDOS
Expert's post
StormedBrain wrote:
Bunuel wrote:
10. If n is not equal to 0, is |n| < 4 ?
(1) n^2 > 16
(2) 1/|n| > n

Question basically asks is -4<n<4 true.

(1) n^2>16 --> n>4 or n<-4, the answer to the question is NO. Sufficient.

(2) 1/|n| > n, this is true for all negative values of n, hence we can not answer the question. Not sufficient.

Answer: A.



Hi Bunuel ,

I know saying (1/|n|) < n will be true for all n<0 is quite clear logically. Still I want to reach this conclusion mathematically.

I got swayed solving for n|n| < 1 .


n*|n| < 1.

If n<0, then we'll have -n^2<1 --> n^2>-1. Which is true. So, n*|n| < 1 holds true for any negative value of n.
If n>0, then we'll have n^2<1 --> -1<n<1. So, n*|n| < 1 also holds true for 0<n<1.

Thus 1/|n| > n holds true if n<0 and 0<n<1.

Does this make sense?
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132517 [1], given: 12324

1 KUDOS received
Intern
Intern
User avatar
Joined: 10 Aug 2013
Posts: 19

Kudos [?]: 11 [1], given: 17

GMAT ToolKit User
Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 22 Sep 2013, 08:07
1
This post received
KUDOS
Bunuel wrote:
StormedBrain wrote:
Bunuel wrote:
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

(1) 2x-2y=1. Well this one is clearly insufficient. You can do it with number plugging OR consider the following: x and y both positive means that point (x,y) is in the I quadrant. 2x-2y=1 --> y=x-1/2, we know it's an equation of a line and basically question asks whether this line (all (x,y) points of this line) is only in I quadrant. It's just not possible. Not sufficient.

(2) x/y>1 --> x and y have the same sign. But we don't know whether they are both positive or both negative. Not sufficient.

(1)+(2) Again it can be done with different approaches. You should just find the one which is the less time-consuming and comfortable for you personally.

One of the approaches:
\(2x-2y=1\) --> \(x=y+\frac{1}{2}\)
\(\frac{x}{y}>1\) --> \(\frac{x-y}{y}>0\) --> substitute x --> \(\frac{1}{y}>0\) --> \(y\) is positive, and as \(x=y+\frac{1}{2}\), \(x\) is positive too. Sufficient.

Answer: C.



Bunuel , Can you please show how we can reach to C using graphical approach ?


4. Are x and y both positive?

The question asks whether point (x, y) is in the first quadrant.

(1) 2x-2y=1 --> draw line y=x-1/2:
Attachment:
graph.png
Not sufficient.


(2) x/y>1 --> Draf line x/y=1. The solutions is the green region:
Attachment:
graph (1).png
Not sufficient.

(1)+(2) Intersection is the portion of the blue line which lies in the first quadrant. Sufficient.

Answer: C.

Hope it helps.



Hey Bunuel,

I am a bit confused. Shouldn't the green area in 3rd quadrant be above the line and below x-axis ?

Lets take a point (-0.5,-1) in the green shaded region , then -0.5/-1 = 1/2 <1.. :roll:
_________________

The First and Last time !!!



BKPL - Below Kudos Poverty Line .....Need your help.

Kudos [?]: 11 [1], given: 17

1 KUDOS received
Current Student
avatar
B
Joined: 20 Mar 2014
Posts: 2676

Kudos [?]: 1767 [1], given: 794

Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
GMAT ToolKit User Premium Member Reviews Badge
Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 08 Sep 2015, 11:30
1
This post received
KUDOS
reto wrote:
Bunuel wrote:
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

(1) 2x-2y=1. Well this one is clearly insufficient. You can do it with number plugging OR consider the following: x and y both positive means that point (x,y) is in the I quadrant. 2x-2y=1 --> y=x-1/2, we know it's an equation of a line and basically question asks whether this line (all (x,y) points of this line) is only in I quadrant. It's just not possible. Not sufficient.

(2) x/y>1 --> x and y have the same sign. But we don't know whether they are both positive or both negative. Not sufficient.

(1)+(2) Again it can be done with different approaches. You should just find the one which is the less time-consuming and comfortable for you personally.

One of the approaches:
\(2x-2y=1\) --> \(x=y+\frac{1}{2}\)
\(\frac{x}{y}>1\) --> \(\frac{x-y}{y}>0\) --> substitute x --> \(\frac{1}{y}>0\) --> \(y\) is positive, and as \(x=y+\frac{1}{2}\), \(x\) is positive too. Sufficient.

Answer: C.


\(\frac{x}{y}>1\) --> \(\frac{x-y}{y}>0\) --> substitute x --> \(\frac{1}{y}>0\) --> \(y\) is positive, and as \(x=y+\frac{1}{2}\), \(x\)

If you substitute x, the new fraction should look as follows: \(\frac{0.5}{y}>0\) since \(x=y+\frac{1}{2}\) ?


Yes, you are correct.

After substituting for x, you get, \(\frac{0.5}{y} >0\) ---> \(\frac{1}{2y} >0\) ---> \(\frac{1}{y} >0\) ---> y >0

Kudos [?]: 1767 [1], given: 794

1 KUDOS received
Current Student
avatar
B
Joined: 20 Mar 2014
Posts: 2676

Kudos [?]: 1767 [1], given: 794

Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
GMAT ToolKit User Premium Member Reviews Badge
Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 04 Oct 2015, 13:34
1
This post received
KUDOS
RafaelPina wrote:
3. Is x^2 + y^2 > 4a?
(1) (x + y)^2 = 9a
(2) (x – y)^2 = a


(1) (x + y)^2 = 9a
x^2 + y^2 + 2xy = 9a
x^2 + y^2 = 9a - 2xy

(2) (x – y)^2 = a
x^2 + y^2 - 2xy = a
x^2 + y^2 = a +2xy

So we can conclude that:
9a - 2xy = a + 2xy
8a = 4xy
4a = 2xy

Hence, in the first conclusion is:
x^2 + y^2 = 9a - 4a
x^2 + y^2 = 5a

Answer is C (Together, they can answer the initial question).

Am I wrong, or right?


You are correct till \(x^2+y^2=5a\) but what if x=y=0 giving you a=0. In this case, \(x^2+y^2\) will be = 4a and NOT > 4a. This is the reason why E is the correct answer.

If you were given "is \(x^2+y^2 \geq 4a\) instead of just >4a", then yes, you would have marked C as the correct answer but you are asked >4a which may or may not be true.

Hope this helps.

Kudos [?]: 1767 [1], given: 794

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42248

Kudos [?]: 132517 [1], given: 12324

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 05 Nov 2015, 01:28
1
This post received
KUDOS
Expert's post
Johnbreeden85 wrote:
Bunuel wrote:
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

(1) 2x-2y=1. Well this one is clearly insufficient. You can do it with number plugging OR consider the following: x and y both positive means that point (x,y) is in the I quadrant. 2x-2y=1 --> y=x-1/2, we know it's an equation of a line and basically question asks whether this line (all (x,y) points of this line) is only in I quadrant. It's just not possible. Not sufficient.

(2) x/y>1 --> x and y have the same sign. But we don't know whether they are both positive or both negative. Not sufficient.

(1)+(2) Again it can be done with different approaches. You should just find the one which is the less time-consuming and comfortable for you personally.

One of the approaches:
\(2x-2y=1\) --> \(x=y+\frac{1}{2}\)
\(\frac{x}{y}>1\) --> \(\frac{x-y}{y}>0\) --> substitute x --> \(\frac{1}{y}>0\) --> \(y\) is positive, and as \(x=y+\frac{1}{2}\), \(x\) is positive too. Sufficient.

Answer: C.



How did you figure out that \(\frac{x}{y}>1\) --> \(\frac{x-y}{y}>0\) ? Any help is appreciated. Thank you.


This is explained couple of times on the previous pages:
\(\frac{x}{y}>1\)

\(\frac{x}{y}-1>0\)

\(\frac{x}{y}-\frac{y}{y}>0\)

\(\frac{x-y}{y}>0\).

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132517 [1], given: 12324

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42248

Kudos [?]: 132517 [1], given: 12324

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 23 Feb 2016, 00:55
1
This post received
KUDOS
Expert's post
nishantdoshi wrote:
Bunuel wrote:
nishantdoshi wrote:

hey bunuel
can you please clear my doubt?
in statement 1 you've written either n is negative OR n equals to zero but as per my knowledge shouldn't n be negative only because I've read it in many post that are on absolute value, here's a link: math-absolute-value-modulus-86462.html

correct me if i'm wrong!


An absolute value cannot be negative but it CAN be 0. For this particular case 0 fits:
-n=|-n| --> -0 = |-0| --> 0 = 0.


thanks for the reply
my understanding about this topic is that...

if x>=0 then |x|=x
and if x<0 then |x|=-x

am i wrong?
please reply!!!


Yes, you are wrong.

We can say that when x<=0, then |x| is also equal to -x:

|0| = -0.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132517 [1], given: 12324

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42248

Kudos [?]: 132517 [1], given: 12324

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 01 Feb 2017, 00:15
1
This post received
KUDOS
Expert's post
ravi19012015 wrote:
Bunuel wrote:
3. Is x^2 + y^2 > 4a?
(1) (x + y)^2 = 9a
(2) (x – y)^2 = a

(1) (x + y)^2 = 9a --> x^2+2xy+y^2=9a. Clearly insufficient.

(2) (x – y)^2 = a --> x^2-2xy+y^2=a. Clearly insufficient.

(1)+(2) Add them up 2(x^2+y^2)=10a --> x^2+y^2=5a. Also insufficient as x,y, and a could be 0 and x^2 + y^2 > 4a won't be true, as LHS and RHS would be in that case equal to zero. Not sufficient.

Answer: E.


Option E is correct only because of Zero? If we put any integer value then LHS > RHS every time. But if x,y and z are Zero then the Q doesn't hold true.
So, Zero is the only option that warrants E?

______________
Yes, that's correct.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132517 [1], given: 12324

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42248

Kudos [?]: 132517 [1], given: 12324

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 29 Jul 2017, 08:20
1
This post received
KUDOS
Expert's post
pclawong wrote:
Bunuel wrote:
13. Is |x-1| < 1?
(1) (x-1)^2 <= 1
(2) x^2 - 1 > 0

Last one.

Is |x-1| < 1? Basically the question asks is 0<x<2 true?

(1) (x-1)^2 <= 1 --> x^2-2x<=0 --> x(x-2)<=0 --> 0<=x<=2. x is in the range (0,2) inclusive. This is the trick here. x can be 0 or 2! Else it would be sufficient. So not sufficient.

(2) x^2 - 1 > 0 --> x<-1 or x>1. Not sufficient.

(1)+(2) Intersection of the ranges from 1 and 2 is 1<x<=2. Again 2 is included in the range, thus as x can be 2, we can not say for sure that 0<x<2 is true. Not sufficient.

Answer: E.


For (2), how do you get x<-1?


x^2 - 1 > 0

x^2 > 1

|x| > 1

x < -1 or x > 1.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132517 [1], given: 12324

VP
VP
avatar
Joined: 05 Mar 2008
Posts: 1467

Kudos [?]: 305 [0], given: 31

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 16 Nov 2009, 13:08
Bunuel wrote:

13. Is |x-1| < 1?
(1) (x-1)^2 <= 1
(2) x^2 - 1 > 0


I'm getting B for this one

1. (x-1)^2 <= 1
x can be 0 which would make the question no
or x can be 1/2 which would make the answer yes
so 1 is insufficient

2. x^2 - 1 > 0
means x^2>1
so x<-1 or x>1
both of which make the question no
so sufficient

Kudos [?]: 305 [0], given: 31

VP
VP
avatar
Joined: 05 Mar 2008
Posts: 1467

Kudos [?]: 305 [0], given: 31

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 16 Nov 2009, 13:19
Bunuel wrote:


12. Is r=s?
(1) -s<=r<=s
(2) |r|>=s



I'm getting c

1. s can be 3 and r can be 3 which makes question yes
s can be 3 and r can be 2 which makes question no
insufficient

2. r can be 3 and s can be 3 makes question yes
r can be 3 s can be 2 makes question no
insufficient

combining:
|r|>=s means
r>=s or r<=-s

and -s<=r<=s means
-s<=r and r<=s

now we have -s<=r and -s>=r so -s = r or s = r
r>=s and r<=s so s = r

Kudos [?]: 305 [0], given: 31

VP
VP
avatar
Joined: 05 Mar 2008
Posts: 1467

Kudos [?]: 305 [0], given: 31

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 16 Nov 2009, 15:33
10. If n is not equal to 0, is |n| < 4 ?
(1) n^2 > 16
(2) 1/|n| > n

answer A
because in number 2 n can be negative or a fraction

Kudos [?]: 305 [0], given: 31

Intern
Intern
avatar
Joined: 19 Oct 2009
Posts: 45

Kudos [?]: 68 [0], given: 4

Re: Inequality and absolute value questions from my collection [#permalink]

Show Tags

New post 16 Nov 2009, 20:07
Bunuel, thanks for the questions. Please provide the OA's too. It would be great if you can provide them soon. I am having my GMAT this week, so kinda tensed and impatient. Also, I am yet to give my MGMAT CAT's, so tell me whether should I solve the questions on the forum because if the questions are from the MGMAT CAT's or Gmat Prep then it may overestimate my result. I would appreciate your response. Thanks once again.

Kudos [?]: 68 [0], given: 4

Re: Inequality and absolute value questions from my collection   [#permalink] 16 Nov 2009, 20:07

Go to page   Previous    1   2   3   4   5   6   7   8   9   10   11  ...  23    Next  [ 459 posts ] 

Display posts from previous: Sort by

Inequality and absolute value questions from my collection

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.