It is currently 17 Dec 2017, 00:27

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Inequality and absolute value questions from my collection

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 42631

Kudos [?]: 135910 [103], given: 12715

Inequality and absolute value questions from my collection [#permalink]

### Show Tags

16 Nov 2009, 10:33
103
This post received
KUDOS
Expert's post
609
This post was
BOOKMARKED
Guys I didn't forget your request, just was collecting good questions to post.

So here are some inequality and absolute value questions from my collection. Not every problem below is hard, but there are a few, which are quite tricky. Please provide your explanations along with the answers.

1. If $$6*x*y = x^2*y + 9*y$$, what is the value of xy?
(1) $$y – x = 3$$
(2) $$x^3< 0$$

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653690

2. If y is an integer and $$y = |x| + x$$, is $$y = 0$$?
(1) $$x < 0$$
(2) $$y < 1$$

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653695

3. Is $$x^2 + y^2 > 4a$$?
(1) $$(x + y)^2 = 9a$$
(2) $$(x – y)^2 = a$$

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653697

4. Are x and y both positive?
(1) $$2x-2y=1$$
(2) $$\frac{x}{y}>1$$

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653709

5. What is the value of y?
(1) $$3|x^2 -4| = y - 2$$
(2) $$|3 - y| = 11$$

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653731

6. If x and y are integer, is y > 0?
(1) $$x +1 > 0$$
(2) $$xy > 0$$

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653740

7. $$|x+2|=|y+2|$$ what is the value of x+y?
(1) $$xy<0$$
(2) $$x>2$$, $$y<2$$

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653783 AND http://gmatclub.com/forum/inequality-an ... l#p1111747

8. $$a*b \neq 0$$. Is $$\frac{|a|}{|b|}=\frac{a}{b}$$?
(1) $$|a*b|=a*b$$
(2) $$\frac{|a|}{|b|}=|\frac{a}{b}|$$

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653789

9. Is n<0?
(1) $$-n=|-n|$$
(2) $$n^2=16$$

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653792

10. If n is not equal to 0, is |n| < 4 ?
(1) $$n^2 > 16$$
(2) $$\frac{1}{|n|} > n$$

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653796

11. Is $$|x+y|>|x-y|$$?
(1) $$|x| > |y|$$
(2) $$|x-y| < |x|$$

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653853

12. Is r=s?
(1) $$-s \leq r \leq s$$
(2) $$|r| \geq s$$

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653870

13. Is $$|x-1| < 1$$?
(1) $$(x-1)^2 \leq 1$$
(2) $$x^2 - 1 > 0$$

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653886

Official answers (OA's) and detailed solutions are in my posts on pages 2 and 3.

PLEASE READ THE WHOLE DISCUSSION BEFORE POSTING A QUESTION.
_________________

Kudos [?]: 135910 [103], given: 12715

VP
Joined: 05 Mar 2008
Posts: 1466

Kudos [?]: 313 [3], given: 31

Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

16 Nov 2009, 11:42
3
This post received
KUDOS
ahh..yes...fresh meat

Kudos [?]: 313 [3], given: 31

VP
Joined: 05 Mar 2008
Posts: 1466

Kudos [?]: 313 [2], given: 31

Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

16 Nov 2009, 11:51
2
This post received
KUDOS
Bunuel wrote:

2. If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1

1. x < 0
you will always get x minus itself so always 0

2. y < 1
y is an integer so y<=0
y can't be negative because x minus itself is always zero

answer d

Kudos [?]: 313 [2], given: 31

VP
Joined: 05 Mar 2008
Posts: 1466

Kudos [?]: 313 [0], given: 31

Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

16 Nov 2009, 12:08
Bunuel wrote:

13. Is |x-1| < 1?
(1) (x-1)^2 <= 1
(2) x^2 - 1 > 0

I'm getting B for this one

1. (x-1)^2 <= 1
x can be 0 which would make the question no
or x can be 1/2 which would make the answer yes
so 1 is insufficient

2. x^2 - 1 > 0
means x^2>1
so x<-1 or x>1
both of which make the question no
so sufficient

Kudos [?]: 313 [0], given: 31

VP
Joined: 05 Mar 2008
Posts: 1466

Kudos [?]: 313 [0], given: 31

Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

16 Nov 2009, 12:19
Bunuel wrote:

12. Is r=s?
(1) -s<=r<=s
(2) |r|>=s

I'm getting c

1. s can be 3 and r can be 3 which makes question yes
s can be 3 and r can be 2 which makes question no
insufficient

2. r can be 3 and s can be 3 makes question yes
r can be 3 s can be 2 makes question no
insufficient

combining:
|r|>=s means
r>=s or r<=-s

and -s<=r<=s means
-s<=r and r<=s

now we have -s<=r and -s>=r so -s = r or s = r
r>=s and r<=s so s = r

Kudos [?]: 313 [0], given: 31

VP
Joined: 05 Mar 2008
Posts: 1466

Kudos [?]: 313 [0], given: 31

Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

16 Nov 2009, 14:33
10. If n is not equal to 0, is |n| < 4 ?
(1) n^2 > 16
(2) 1/|n| > n

answer A
because in number 2 n can be negative or a fraction

Kudos [?]: 313 [0], given: 31

Intern
Joined: 19 Oct 2009
Posts: 45

Kudos [?]: 69 [0], given: 4

Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

16 Nov 2009, 19:07
Bunuel, thanks for the questions. Please provide the OA's too. It would be great if you can provide them soon. I am having my GMAT this week, so kinda tensed and impatient. Also, I am yet to give my MGMAT CAT's, so tell me whether should I solve the questions on the forum because if the questions are from the MGMAT CAT's or Gmat Prep then it may overestimate my result. I would appreciate your response. Thanks once again.

Kudos [?]: 69 [0], given: 4

Manager
Joined: 13 Aug 2009
Posts: 199

Kudos [?]: 130 [0], given: 16

Schools: Sloan '14 (S)
Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

16 Nov 2009, 20:39
Quality questions as always... Thanks Bunuel! +1

Kudos [?]: 130 [0], given: 16

SVP
Joined: 29 Aug 2007
Posts: 2469

Kudos [?]: 868 [0], given: 19

Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

16 Nov 2009, 21:46
lagomez wrote:
Bunuel wrote:

13. Is |x-1| < 1?
(1) (x-1)^2 <= 1
(2) x^2 - 1 > 0

I'm getting B for this one

1. (x-1)^2 <= 1
x can be 0 which would make the question no
or x can be 1/2 which would make the answer yes
so 1 is insufficient

2. x^2 - 1 > 0
means x^2>1
so x<-1 or x>1
both of which make the question no
so sufficient

(1) (x-1)^2 <= 1
x is 0 to 2.
If x = 2, yes.
If x < 2, No.

(2) x^2 - 1 > 0
x cannot be -1 to 1 i.e. x<-1 or x>1. NSF.

From 1 and 2: x is >1 but <=2. NSF..

E.
_________________

Verbal: http://gmatclub.com/forum/new-to-the-verbal-forum-please-read-this-first-77546.html
Math: http://gmatclub.com/forum/new-to-the-math-forum-please-read-this-first-77764.html
Gmat: http://gmatclub.com/forum/everything-you-need-to-prepare-for-the-gmat-revised-77983.html

GT

Kudos [?]: 868 [0], given: 19

Math Expert
Joined: 02 Sep 2009
Posts: 42631

Kudos [?]: 135910 [1], given: 12715

Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

17 Nov 2009, 02:15
1
This post received
KUDOS
Expert's post
gmat620 wrote:
Bunuel, thanks for the questions. Please provide the OA's too. It would be great if you can provide them soon. I am having my GMAT this week, so kinda tensed and impatient. Also, I am yet to give my MGMAT CAT's, so tell me whether should I solve the questions on the forum because if the questions are from the MGMAT CAT's or Gmat Prep then it may overestimate my result. I would appreciate your response. Thanks once again.

These questions are from various sources. Couple of questions might be from MGMAT CAT or Gmat Prep, but not more than that.

I'll provide OA in a day or two, after discussions. Tell me if you want the answers for the specific questions earlier than that and I'll mail you.
_________________

Kudos [?]: 135910 [1], given: 12715

Manager
Joined: 13 Aug 2009
Posts: 199

Kudos [?]: 130 [0], given: 16

Schools: Sloan '14 (S)
Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

17 Nov 2009, 04:18
Bunuel wrote:
1. If 6*x*y = x^2*y + 9*y, what is the value of xy?
(1) y – x = 3
(2) x^3< 0

Not sure about this one...

First I reduced the given equation (divided out the y) and solved for x:
6*x*y = x^2*y + 9*y
6*x = x^2 + 9
0 = x^2 - 6*x + 9
0 = (x-3)^2
x = 3

Statement 1:

y-x=3
y-3=3
y=6
xy=3*6=18

SUFFICIENT

Statement 2:

x^3<0

We have no idea what the value of y is from this statement. The only thing that made me look twice was the face that if x^3 is true, then x should be a negative value... did I calculate the value of x incorrectly above?

INSUFFICIENT

ANSWER: A.

Kudos [?]: 130 [0], given: 16

Manager
Joined: 13 Aug 2009
Posts: 199

Kudos [?]: 130 [0], given: 16

Schools: Sloan '14 (S)
Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

17 Nov 2009, 04:34
Bunuel wrote:
2. If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1

Another way of looking at the problem is to ask, is x<0? Because if it is, then we know that y is zero. The only case in which y will not be zero is if x is positive.

Statement 1:

x<0... answers my question above.

SUFFICIENT

Statement 2:

y<1

Because y is an integer, it must be one of the following values: 0, -1, -2, -3...

BUT |x| + x can never be a negative value. The lowest value that it can be is 0.

Hence, y can never be negative and the only possible value it can be then is 0.

SUFFICIENT

ANSWER: D.

Kudos [?]: 130 [0], given: 16

Intern
Joined: 08 Nov 2009
Posts: 47

Kudos [?]: 58 [2], given: 0

Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

17 Nov 2009, 06:38
2
This post received
KUDOS
3)
I) (x+y)^2=9a x^2+y^2=9a-2xy NS
II) (x-y)^2=a x^2+y^2=a+2xy NS
Together 2(x^2+y^2)=10a x^2+y^2=5a
If either x or y are larger than 0, the stem would be true, but if they’re both zero the stem is false, hence E

4)
I don’t get the two clues; they seem to be mutually exclusive

5)
I) 3|x^2-4|=y-2 either y=3x^2-10 or y=14-3x^2 NS
II) |3-y|=11 either y=-8 or y=14 NS
Together -8=3x^2-10 so 3x^2=2 ok 14=3x^2-10 so 3x^2=28 ok, hence E

6)
I) x+1>0 so x={0, 1, 2, …} NS
II) xy>0 so x and y have the same sign and none of them is zero NS
Together, x={1, 2, 3, ..} and y has the same sign, hence C

7) |x+2|=|y+2| either x+2=y+2 or x+2=-y-2 (the other two combinations can be transformed into these by multiplying by -1)
Reordering: x-y=0 or x+y=-4
I)xy<0, hence x and y have different signs and none of them is zero. The only possibility is x+y=-4 S
II) x>2, y<2 hence x#y. The only possibility is x+y=-4 S, therefore D

8)a*b#0, hence a and b are both non-zero
I) |a*b|=a*b a and b have the same sign and the stem is always true S
II) |a|/|b|=|a/b| this is true regardless of the values of a and b, and nothing can be said about the stem NS, therefore A

9)
I) –n=|-n| n<=0 NS
II) n^2=16 n=+/-4 NS
Together n=-4 therefore C

10)n#0
I) n^2>16, so |n|>4 S
II) 1/|n|>n true for n<-1 NS, therefore A

11) Plugging in numbers I get B, but there’s no rime or reason to my solution

12)
I) –s<=r<=s obviously NS. Since s>=-s, s is either positive or zero
II)|r|>=s obviously NS
Together: I) tells us that s>=0; II) tells us that r>=s or r<=-s. The only case in which I and II are simultaneously satisfied is r=s, therefore C

13) x=(0:2) with 0 and 2 excluded
I) (x-1)^2<=1, hence x=[0:2] with 0 and 2 included, hence NS
II) x^2-1>0 x<-1 or x>1. For x=1.5 the stem is true, for x=3 it is false, hence NS
Together, for x=1.5 the stem is true, for x=2 it is false, hence E

Kudos [?]: 58 [2], given: 0

Math Expert
Joined: 02 Sep 2009
Posts: 42631

Kudos [?]: 135910 [1], given: 12715

Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

17 Nov 2009, 09:07
1
This post received
KUDOS
Expert's post
Marco83 wrote:
4)
I don’t get the two clues; they seem to be mutually exclusive

Yes there was a typo in 4. Edited. Great job Marco83. Even though not every answer is correct, you definitely know how to deal with this kind of problems.
_________________

Kudos [?]: 135910 [1], given: 12715

Manager
Joined: 13 Aug 2009
Posts: 199

Kudos [?]: 130 [0], given: 16

Schools: Sloan '14 (S)
Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

17 Nov 2009, 09:13
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

Statement 1:

2(1)-2(1/2)=1 , x,y are both positve

2(1/2)-2(-1/2)=1 x is positive, y is negative

INSUFFICIENT

Statement 2:

Either (x,y) are both positive or both negative

INSUFFICENT

Statement 1 and 2:

With both requirements x must be greater than y and satisfy this equation: 2x-2y=1

2(1)-2(1/2)=1 , x,y are both positve and x>y

2(1/2)-2(-1/2)=1 x is positive, y is negative and x>y

Answer: E

Kudos [?]: 130 [0], given: 16

Senior Manager
Joined: 16 Apr 2009
Posts: 317

Kudos [?]: 159 [0], given: 14

Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

17 Nov 2009, 09:27
12. Is r=s?

(1) -s<=r<=s

(2) |r|>=s

E – for this - both can be true or false when 0< r < 1
For example , take r as 0.8
S = 0.86 i.e. -0.86 < = 0.8 < = 0.86
|0.8|>= 0.86 i.e. 1 >= 0.86
Combining , any values can be taken , on values > =1 , both r and s
will be same

3. Is x^2 + y^2 > 4a?

(1) (x + y)^2 = 9a

(2) (x – y)^2 = a
C is the answer

Combined both and the equation will give x^2 + y^2 = 5a
_________________

Always tag your question

Kudos [?]: 159 [0], given: 14

Manager
Joined: 13 Aug 2009
Posts: 199

Kudos [?]: 130 [1], given: 16

Schools: Sloan '14 (S)
Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

17 Nov 2009, 09:34
1
This post received
KUDOS
Bunuel wrote:
5. What is the value of y?
(1) 3|x^2 -4| = y - 2
(2) |3 - y| = 11

Statement 1:

Two equations, two unknowns... INSUFFICIENT

Statement 2:

|3 - y| = 11
(3-y)=11 or (3-y)=-11
y=-8, 14

INSUFFICIENT

Statements 1 and 2:

y must be 14 because 3|x^2 -4| can never be a negative value (no matter what you plug in for x, you will get a positve value because of the absolute value signs).

SUFFICIENT

ANSWER: C.

Last edited by h2polo on 17 Nov 2009, 09:54, edited 1 time in total.

Kudos [?]: 130 [1], given: 16

Manager
Joined: 13 Aug 2009
Posts: 199

Kudos [?]: 130 [0], given: 16

Schools: Sloan '14 (S)
Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

17 Nov 2009, 09:43
Bunuel wrote:
6. If x and y are integer, is y > 0?
(1) x +1 > 0
(2) xy > 0

Statement 1:

Nothing about y... INSUFFICIENT

Statement 2:

two equations, two unknowns... INSUFFICIENT

Statements 1 and 2:

From x +1 > 0 and the fact that x must be an integer, we know that x must be [0,1,2,3...]

Because we know that xy > 0, we know that x cannot be 0... therefore y must be a positive integer!

SUFFICIENT

ANSWER: C.

Kudos [?]: 130 [0], given: 16

Intern
Joined: 08 Nov 2009
Posts: 47

Kudos [?]: 58 [0], given: 0

Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

17 Nov 2009, 09:48
4)
I) 2x-2y=1 so y=x-1/2 NS
II)x/y>0 so x and y have the same sign and the modulus of x has to be larger than the modulus of y NS
Together, to satisfy both clues needs to be larger than 1/2 and x becomes larger than 0; the stem is true, therefore C

Kudos [?]: 58 [0], given: 0

Intern
Joined: 08 Nov 2009
Posts: 47

Kudos [?]: 58 [0], given: 0

Re: Inequality and absolute value questions from my collection [#permalink]

### Show Tags

17 Nov 2009, 09:53
h2polo wrote:
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

Statement 1:

2(1)-2(1/2)=1 , x,y are both positve

2(1/2)-2(-1/2)=1 x is positive, y is negative

INSUFFICIENT

Statement 2:

Either (x,y) are both positive or both negative

INSUFFICENT

Statement 1 and 2:

With both requirements x must be greater than y and satisfy this equation: 2x-2y=1

2(1)-2(1/2)=1 , x,y are both positve and x>y

2(1/2)-2(-1/2)=1 x is positive, y is negative and x>y

Answer: E

Your last choice of numbers: x=1/2, y=-1/2 does not satisfy clue I, because 2*(1/2)-2*(-1/2)=2, not 1

Kudos [?]: 58 [0], given: 0

Re: Inequality and absolute value questions from my collection   [#permalink] 17 Nov 2009, 09:53

Go to page    1   2   3   4   5   6   7   8   9   10   11  ...  24    Next  [ 462 posts ]

Display posts from previous: Sort by

# Inequality and absolute value questions from my collection

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.