GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 11 Nov 2019, 22:50

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Inequality and absolute value questions from my collection

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 16 Nov 2009, 11:33
199
685
Guys I didn't forget your request, just was collecting good questions to post.

So here are some inequality and absolute value questions from my collection. Not every problem below is hard, but there are a few, which are quite tricky. Please provide your explanations along with the answers.

1. If \(6*x*y = x^2*y + 9*y\), what is the value of xy?
(1) \(y – x = 3\)
(2) \(x^3< 0\)

Solution: https://gmatclub.com/forum/inequality-a ... ml#p653690

2. If y is an integer and \(y = |x| + x\), is \(y = 0\)?
(1) \(x < 0\)
(2) \(y < 1\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653695

3. Is \(x^2 + y^2 > 4a\)?
(1) \((x + y)^2 = 9a\)
(2) \((x – y)^2 = a\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653697

4. Are x and y both positive?
(1) \(2x-2y=1\)
(2) \(\frac{x}{y}>1\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653709
Graphic approach: https://gmatclub.com/forum/inequality-a ... l#p1269802

5. What is the value of y?
(1) \(3|x^2 -4| = y - 2\)
(2) \(|3 - y| = 11\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653731

6. If x and y are integer, is y > 0?
(1) \(x +1 > 0\)
(2) \(xy > 0\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653740

7. \(|x+2|=|y+2|\) what is the value of x+y?
(1) \(xy<0\)
(2) \(x>2\), \(y<2\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653783 AND https://gmatclub.com/forum/inequality-a ... l#p1111747

8. \(a*b \neq 0\). Is \(\frac{|a|}{|b|}=\frac{a}{b}\)?
(1) \(|a*b|=a*b\)
(2) \(\frac{|a|}{|b|}=|\frac{a}{b}|\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653789

9. Is n<0?
(1) \(-n=|-n|\)
(2) \(n^2=16\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653792

10. If n is not equal to 0, is |n| < 4 ?
(1) \(n^2 > 16\)
(2) \(\frac{1}{|n|} > n\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653796

11. Is \(|x+y|>|x-y|\)?
(1) \(|x| > |y|\)
(2) \(|x-y| < |x|\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653853

12. Is r=s?
(1) \(-s \leq r \leq s\)
(2) \(|r| \geq s\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653870

13. Is \(|x-1| < 1\)?
(1) \((x-1)^2 \leq 1\)
(2) \(x^2 - 1 > 0\)

Solution: http://gmatclub.com/forum/inequality-an ... ml#p653886

Official answers (OA's) and detailed solutions are in my posts on pages 2 and 3.


PLEASE READ THE WHOLE DISCUSSION BEFORE POSTING A QUESTION.
_________________
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 08:39
86
1
128
SOLUTIONS:

1. If 6*x*y = x^2*y + 9*y, what is the value of xy?
(1) y – x = 3
(2) x^3< 0

First let's simplify given expression \(6*x*y = x^2*y + 9*y\):

\(y*(x^2-6x+9)=0\) --> \(y*(x-3)^2=0\). Note here that we CAN NOT reduce this expression by \(y\), as some of you did. Remember we are asked to determine the value of \(xy\), and when reducing by \(y\) you are assuming that \(y\) doesn't equal to \(0\). We don't know that.

Next: we can conclude that either \(x=3\) or/and \(y=0\). Which means that \(xy\) equals to 0, when y=0 and x any value (including 3), OR \(xy=3*y\) when y is not equal to zero, and x=3.

(1) \(y-x=3\). If y is not 0, x must be 3 and y-x to be 3, y must be 6. In this case \(xy=18\). But if y=0 then x=-3 and \(xy=0\). Two possible scenarios. Not sufficient.

OR:

\(y-x=3\) --> \(x=y-3\) --> \(y*(x-3)^2=y*(y-3-3)^2=y(y-6)^2=0\) --> either \(y=0\) or \(y=6\) --> if \(y=0\), then \(x=-3\) and \(xy=0\) \(or\) if \(y=6\), then \(x=3\) and \(xy=18\). Two different answers. Not sufficient.

(2) \(x^3<0\). x is negative, hence x is not equals to 3, hence y must be 0. So, xy=0. Sufficient.

Answer: B.

This one was quite tricky and was solved incorrectly by all of you.

Never reduce equation by variable (or expression with variable), if you are not certain that variable (or expression with variable) doesn't equal to zero. We can not divide by zero.

Never multiply (or reduce) inequality by variable (or expression with variable) if you don't know the sign of it or are not certain that variable (or expression with variable) doesn't equal to zero.

_________________
Most Helpful Community Reply
Manager
Manager
User avatar
Joined: 29 Oct 2009
Posts: 174
GMAT 1: 750 Q50 V42
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 17 Nov 2009, 15:29
6
Quote:
11. Is |x+y|>|x-y|?
(1) |x| > |y|
(2) |x-y| < |x|


Question Stem : Is the distance between X and -Y greater than the distance between X and Y?
Note : Using number line approach.

St. (1) : |x| > |y|
OR, The distance between X and the origin is greater than the distance between Y and the origin.

Now we can have two cases :

(a) When X is positive : In this case, X > Y for the above condition to be true.

_________|_________|_________|_________|_________|__________
_________________-Y______Origin______Y........ Region of X.........

Thus we can see that the distance between X and - Y will always be greater than the distance between X and Y. Hence question stem is true.

(b) When X is negative : In this case, X < -Y for the statement to be true.

_________|_________|_________|_________|_________|__________
.... Region of X.....-Y_____Origin_______Y___________

Thus we can see that the distance between X and -Y will always be less than the distance between X and Y. Hence, question stem becomes false.

Due to conflicting statements, St (1) becomes Insufficient.

St. (2) : |x-y| < |x|
OR, the distance between X and Y is less than the distance between X and the origin.

Now again let us consider the different cases :

(a) When X is positive : For the statement to be true and for X to be positive, X must be greater than Y/2. For any value of X less than Y/2 the statement will become false. The statement will be true for any value greater than Y/2.

Thus we see that only one case comes into the picture. Now let us see how it relates to the question stem.

_________|_________|____;____|_________|________
________-Y____Origin__y/2...Y...... Region of X....

Thus we can see that the distance between X and - Y will be greater than the distance between X and Y for all values of X > Y/2. Thus question stem is true.
St. (2) is sufficient.

Answer : B
_________________
Click below to check out some great tips and tricks to help you deal with problems on Remainders!
http://gmatclub.com/forum/compilation-of-tips-and-tricks-to-deal-with-remainders-86714.html#p651942

Word Problems Made Easy!
1) Translating the English to Math : http://gmatclub.com/forum/word-problems-made-easy-87346.html
2) 'Work' Problems Made Easy : http://gmatclub.com/forum/work-word-problems-made-easy-87357.html
3) 'Distance/Speed/Time' Word Problems Made Easy : http://gmatclub.com/forum/distance-speed-time-word-problems-made-easy-87481.html
General Discussion
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 12:26
43
110
7. |x+2|=|y+2| what is the value of x+y?
(1) xy<0
(2) x>2 y<2

This one is quite interesting.

First note that |x+2|=|y+2| can take only two possible forms:

A. x+2=y+2 --> x=y. This will occur if and only x and y are both >= than -2 OR both <= than -2. In that case x=y. Which means that their product will always be positive or zero when x=y=0.
B. x+2=-y-2 --> x+y=-4. This will occur when either x or y is less then -2 and the other is more than -2.

When we have scenario A, xy will be nonnegative only. Hence if xy is negative we have scenario B and x+y=-4. Also note that vise-versa is not right. Meaning that we can have scenario B and xy may be positive as well as negative.

(1) xy<0 --> We have scenario B, hence x+y=-4. Sufficient.

(2) x>2 and y<2, x is not equal to y, we don't have scenario A, hence we have scenario B, hence x+y=-4. Sufficient.

Answer: D.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 10:10
42
72
5. What is the value of y?
(1) 3|x^2 -4| = y - 2
(2) |3 - y| = 11

(1) As we are asked to find the value of y, from this statement we can conclude only that y>=2, as LHS is absolute value which is never negative, hence RHS als can not be negative. Not sufficient.

(2) |3 - y| = 11:

y<3 --> 3-y=11 --> y=-8
y>=3 --> -3+y=11 --> y=14

Two values for y. Not sufficient.

(1)+(2) y>=2, hence y=14. Sufficient.

Answer: C.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 15:48
42
95
11. Is |x+y|>|x-y|?
(1) |x| > |y|
(2) |x-y| < |x|

To answer this question you should visualize it. We have comparison of two absolute values. Ask yourself when |x+y| is more then than |x-y|? If and only when x and y have the same sign absolute value of x+y will always be more than absolute value of x-y. As x+y when they have the same sign will contribute to each other and x-y will not.

5+3=8 and 5-3=2
OR -5-3=-8 and -5-(-3)=-2.

So if we could somehow conclude that x and y have the same sign or not we would be able to answer the question.

(1) |x| > |y|, this tell us nothing about the signs of x and y. Not sufficient.

(2) |x-y| < |x|, says that the distance between x and y is less than distance between x and origin. This can only happen when x and y have the same sign, when they are both positive or both negative, when they are at the same side from the origin. Sufficient. (Note that vise-versa is not right, meaning that x and y can have the same sign but |x| can be less than |x-y|, but if |x|>|x-y| the only possibility is x and y to have the same sign.)

Answer: B.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 08:55
36
1
93
3. Is x^2 + y^2 > 4a?
(1) (x + y)^2 = 9a
(2) (x – y)^2 = a

(1) (x + y)^2 = 9a --> x^2+2xy+y^2=9a. Clearly insufficient.

(2) (x – y)^2 = a --> x^2-2xy+y^2=a. Clearly insufficient.

(1)+(2) Add them up 2(x^2+y^2)=10a --> x^2+y^2=5a. Also insufficient as x,y, and a could be 0 and x^2 + y^2 > 4a won't be true, as LHS and RHS would be in that case equal to zero. Not sufficient.

Answer: E.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 08:47
32
1
48
2. If y is an integer and y = |x| + x, is y = 0?

Notice that from \(y=|x|+x\) it follows that y cannot be negative:
If \(x>0\), then \(y=x+x=2x=2*positive=positive\);
If \(x\leq{0}\) (when x is negative or zero) then \(y=-x+x=0\).

(1) \(x<0\) --> \(y=|x|+x=-x+x=0\). Sufficient.

(2) \(y<1\). We found out above that y cannot be negative and we are given that y is an integer, hence \(y=0\). Sufficient.


Answer: D.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 16:42
21
42
12. Is r=s?
(1) -s<=r<=s
(2) |r|>=s

This one is tough.

(1) -s<=r<=s, we can conclude two things from this statement:
A. s is either positive or zero, as -s<=s;
B. r is in the range (-s,s) inclusive, meaning that r can be -s as well as s.
But we don't know whether r=s or not. Not sufficient.

(2) |r|>=s, clearly insufficient.

(1)+(2) -s<=r<=s, s is not negative, |r|>=s --> r>=s or r<=-s. This doesn't imply that r=s, from this r can be -s as well.
Consider: s=5, r=5 --> -5<=5<=5 |5|>=5
s=5, r=-5 --> -5<=-5<=5 |-5|>=5
Both statements are true with these values. Hence insufficient.

Answer: E.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 12:42
18
45
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 09:17
16
51
4. Are x and y both positive?
(1) 2x-2y=1
(2) x/y>1

(1) 2x-2y=1. Well this one is clearly insufficient. You can do it with number plugging OR consider the following: x and y both positive means that point (x,y) is in the I quadrant. 2x-2y=1 --> y=x-1/2, we know it's an equation of a line and basically question asks whether this line (all (x,y) points of this line) is only in I quadrant. It's just not possible. Not sufficient.

(2) x/y>1 --> x and y have the same sign. But we don't know whether they are both positive or both negative. Not sufficient.

(1)+(2) Again it can be done with different approaches. You should just find the one which is the less time-consuming and comfortable for you personally.

One of the approaches:
\(2x-2y=1\) --> \(x=y+\frac{1}{2}\)
\(\frac{x}{y}>1\) --> \(\frac{x-y}{y}>0\) --> substitute x --> \(\frac{1}{y}>0\) --> \(y\) is positive, and as \(x=y+\frac{1}{2}\), \(x\) is positive too. Sufficient.

Answer: C.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 17:09
16
29
13. Is |x-1| < 1?
(1) (x-1)^2 <= 1
(2) x^2 - 1 > 0

Last one.

Is |x-1| < 1? Basically the question asks is 0<x<2 true?

(1) (x-1)^2 <= 1 --> x^2-2x<=0 --> x(x-2)<=0 --> 0<=x<=2. x is in the range (0,2) inclusive. This is the trick here. x can be 0 or 2! Else it would be sufficient. So not sufficient.

(2) x^2 - 1 > 0 --> x<-1 or x>1. Not sufficient.

(1)+(2) Intersection of the ranges from 1 and 2 is 1<x<=2. Again 2 is included in the range, thus as x can be 2, we cannot say for sure that 0<x<2 is true. Not sufficient.

Answer: E.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 12:48
14
28
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 12:34
12
20
8. a*b#0. Is |a|/|b|=a/b?
(1) |a*b|=a*b
(2) |a|/|b|=|a/b|

|a|/|b|=a/b is true if and only a and b have the same sign, meaning a/b is positive.

(1) |a*b|=a*b, means a and b are both positive or both negative, as LHS is never negative (well in this case LHS is positive as neither a nor b equals to zero). Hence a/b is positive in any case. Hence |a|/|b|=a/b. Sufficient.

(2) |a|/|b|=|a/b|, from this we cannot conclude whether they have the same sign or not. Not sufficient.

Answer: A.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 10:25
11
13
6. If x and y are integer, is y > 0?
(1) x +1 > 0
(2) xy > 0

(1) x+1>0 --> x>-1. As x is an integer x can take the following values 0,1,2,... But we know nothing about y. Not sufficient.

(2) xy>0. x and y have the same sign (both positive OR both negative) and neither x nor y is zero. Not sufficient.

(1)+(2) x is positive, as from (1) it's 0,1,2.. and from (2) x is not zero. Hence xy to be positive y also must be positive. Sufficient.

Answer: C.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 09 Aug 2012, 17:21
7
5
jayaddula wrote:
Bunuel wrote:
7. |x+2|=|y+2| what is the value of x+y?
(1) xy<0
(2) x>2 y<2

This one is quite interesting.

First note that |x+2|=|y+2| can take only two possible forms:

A. x+2=y+2 --> x=y. This will occur if and only x and y are both >= than -2 OR both <= than -2. In that case x=y. Which means that their product will always be positive or zero when x=y=0.
B. x+2=-y-2 --> x+y=-4. This will occur when either x or y is less then -2 and the other is more than -2.

When we have scenario A, xy will be nonnegative only. Hence if xy is negative we have scenario B and x+y=-4. Also note that vise-versa is not right. Meaning that we can have scenario B and xy may be positive as well as negative.

(1) xy<0 --> We have scenario B, hence x+y=-4. Sufficient.

(2) x>2 and y<2, x is not equal to y, we don't have scenario A, hence we have scenario B, hence x+y=-4. Sufficient.

Answer: D.


Hi Bunuel,

I am getting E and just cannot understand D. Please see my solution below -
I used number picking.

A. xy<0,
x=+ and y=- For this condition choosing different values of x and y (x=2,y=-6: x=3, y=-7)satisfies the given condition in modulus. Hence x=y can be different value
or x=- and y=+ - This condition doesn't satisfy the modulus condiotion

B- x>2 and y<2 - As per the above stmt 1 - condition 1, there can be various values for x and y, hence x+y is different.

Hence E. I know I am going wrong some where, please help.

thanks
jay


In your example, both pairs give the same value for x+y: 2-6=-4 and 3-7=-4.

We can solve this question in another way:

7. |x+2|=|y+2| what is the value of x+y?

Square both sides: \(x^2+4x+4=y^2+4y+4\) --> \(x^2-y^2+4x-4y=0\) --> \((x+y)(x-y)+4(x-y)=0\) --> \((x-y)(x+y+4)=0\) --> either \(x=y\) or \(x+y=-4\).

(1) xy<0 --> the first case is not possible, since if \(x=y\), then \(xy=x^2\geq{0}\), not \(<0\) as given in this statement, hence we have the second case: \(x+y=-4\). Sufficient.

(2) x>2 and y<2. This statement implies that \(x\neq{y}\), therefore \(x+y=-4\). Sufficient.

Answer: D.

Hope it's clear.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 18 Nov 2009, 17:51
5
lagomez wrote:
Just curious if my thinking is correct.

on the 2nd part I get y = -8 and y =14
Then I substituted the values into the first equation:
3|x^2-4|=-10
the answer will never give -10/3

do the same for 14
3|x^2-4|=12
x = 0

using my methodology I also got C, but is my thinking correct?


Well you can even not calculate for x. Statement 1 says that y must be greater than or equal to 2. Statement 2 gives 2 values of y -8 OR 14. Combining we get that y=14.

Remember we are asked to determine the value of y not x.
_________________
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58954
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 20 Nov 2009, 14:45
4
tihor wrote:
Bunuel, two questions:
shouldnt |x-1| < 1 be 0<x<2? and not -2<x<2?
secondly, how does this happen: x(x-2)<=0 --> 0<=x<=2?
does this not translate into x<=0 or x<=2?

thank you very much for all the questions and solutions.


Thank you very much for this catch. +1. There was a typo. So you are right with the first one:
|x-1| < 1 means 0<x<2. Already edited the post.

As for the second one:
x(x-2)<=0 means 0<=x<=2, if you plug the values from this range you'll get the values less than or equal to 0. If you plug the values less than 0 or more than 2 you'll get only positive values.

x(x-2) is "smiling" parabola, and the intersections with X-axis are at x=0 and x=2, the range between will be below X-axis.

Hope it helps.
_________________
VP
VP
avatar
Joined: 05 Mar 2008
Posts: 1347
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 16 Nov 2009, 12:42
3
ahh..yes...fresh meat
VP
VP
avatar
Joined: 05 Mar 2008
Posts: 1347
Re: Inequality and absolute value questions from my collection  [#permalink]

Show Tags

New post 16 Nov 2009, 12:51
3
1
Bunuel wrote:

2. If y is an integer and y = |x| + x, is y = 0?
(1) x < 0
(2) y < 1



1. x < 0
you will always get x minus itself so always 0

2. y < 1
y is an integer so y<=0
y can't be negative because x minus itself is always zero

answer d
GMAT Club Bot
Re: Inequality and absolute value questions from my collection   [#permalink] 16 Nov 2009, 12:51

Go to page    1   2   3   4   5   6   7   8   9   10   11    Next  [ 218 posts ] 

Display posts from previous: Sort by

Inequality and absolute value questions from my collection

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne