GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 18 Oct 2019, 22:24

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Is 1+x+x^2+x^3+....+x^10 positive?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Senior Manager
Senior Manager
avatar
Status: Up again.
Joined: 31 Oct 2010
Posts: 464
Concentration: Strategy, Operations
GMAT 1: 710 Q48 V40
GMAT 2: 740 Q49 V42
Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 02 Jan 2011, 02:34
3
9
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

63% (01:48) correct 37% (01:41) wrong based on 287 sessions

HideShow timer Statistics

Is \(1+x+x^2+x^3+....+x^{10}\)positive?

(1) \(x<-1\)
(2) \(x^2>2\)

Source: GMAT Club Hardest problems.

_________________
My GMAT debrief: http://gmatclub.com/forum/from-620-to-710-my-gmat-journey-114437.html
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58453
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 02 Jan 2011, 03:14
3
9
gmatpapa wrote:
Is \(1+x+x^2+x^3+....+x^{10}\)positive?

1. \(x<-1\)
2. \(x^2>2\)

Source: GMAT Club Hardest problems.


Is \(1+(x+x^2)+(x^3+x^4)+...+(x^9+x^{10})>0\)?

(1) \(x<-1\): \(x+x^2>0\) (x<-1 meas that x^2>|x|), \(x^3+x^4>0\), ..., \(x^9+x^{10}>0\), so the sum is also more than zero. Sufficient.

(2) \(x^2>2\): even if x itself is negative then still as above: \(x+x^2>0\), \(x^3+x^4>0\), ..., \(x^9+x^{10}>0\), so the sum is also more than zero. Sufficient.

Answer: D.
_________________
General Discussion
Senior Manager
Senior Manager
avatar
Status: Up again.
Joined: 31 Oct 2010
Posts: 464
Concentration: Strategy, Operations
GMAT 1: 710 Q48 V40
GMAT 2: 740 Q49 V42
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 03 Jan 2011, 11:34
Its clear now! Thanks!!
_________________
My GMAT debrief: http://gmatclub.com/forum/from-620-to-710-my-gmat-journey-114437.html
Intern
Intern
avatar
Joined: 20 Jul 2010
Posts: 3
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 04 Jan 2011, 06:56
Hi!
This is a geometric progression. Could you explain this using the sum formula?

Thanks!
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58453
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 04 Jan 2011, 07:36
2
amankalra wrote:
Hi!
This is a geometric progression. Could you explain this using the sum formula?

Thanks!


Sum of the first \(n\) terms of geometric progression is given by: \(sum=\frac{b*(r^{n}-1)}{r-1}\), where \(b\) is the first term, \(n\) # of terms and \(r\) is a common ratio \(\neq{1}\).

So, in our case \(b=x\) and \(r=x\) --> \(1+(x+x^2+x^3+x^4+...+x^9+x^{10})=1+sum_{10}=1+\frac{x*(x^{10}-1)}{x-1}\).

(1) \(x<-1\) --> \(1+\frac{x*(x^{10}-1)}{x-1}=1+\frac{negative*positive}{negative}=1+positive=positive\). Sufficient.

(2) \(x^2>2\) --> \(x<-\sqrt{2}\) or \(x>\sqrt{2}\) --> so, either \(1+\frac{x*(x^{10}-1)}{x-1}=1+\frac{negative*positive}{negative}=1+positive=positive\) or \(1+\frac{x*(x^{10}-1)}{x-1}=1+\frac{positive*positive}{positive}=1+positive=positive\). Sufficient.

Answer: D.

Hope it's clear.
_________________
Intern
Intern
avatar
Joined: 20 Jul 2010
Posts: 3
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 04 Jan 2011, 07:54
Thanks!
I was actually considering a total of 11 terms, and b=1.
Is that right?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58453
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 04 Jan 2011, 08:04
1
amankalra wrote:
Thanks!
I was actually considering a total of 11 terms, and b=1.
Is that right?


You can do that. If you take 1 as the first term then the formula will be \(sum=\frac{b*(r^{n}-1)}{r-1}=\frac{1*(x^{11}-1)}{x-1}=\frac{x^{11}-1}{x-1}\).

(1) \(x<-1\) --> \(\frac{x^{11}-1}{x-1}=\frac{negative}{negative}=positive\). Sufficient.

(2) \(x^2>2\) --> \(x<-\sqrt{2}\approx{-1.4}\) or \(x>\sqrt{2}\approx{1.4}\) --> so, either \(\frac{x^{11}-1}{x-1}=\frac{negative}{negative}=positive\) or \(\frac{x^{11}-1}{x-1}=\frac{positive}{positive}=positive\). Sufficient.

Answer: D.

Hope it's clear.
_________________
Intern
Intern
avatar
Joined: 20 Jul 2010
Posts: 3
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 04 Jan 2011, 08:08
Okay.
Thanks a ton! :)
Manager
Manager
avatar
Joined: 17 Dec 2010
Posts: 87
Location: Australia
GMAT 1: 690 Q48 V37
GPA: 3.37
WE: Engineering (Consulting)
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 04 Jan 2011, 21:14
I went for the 11 second solution and picked A...

If I took time on it and actualyl solved it - it is clear that the answer is D.

I got tripped up be thinking to myself "x could have two values -> not sufficient"

solution would have been let x = 2 or -2. -2 or 2^10 = 1024. 11 terms in series. Avg value of terms is 1025 => sum is 1025 / 2 = positive -> Sufficient


WHY OH WHY DO I RUSH?!?!?!
_________________
Kudos always appreciated if my post helped you :)
Intern
Intern
avatar
Joined: 18 Mar 2012
Posts: 46
GPA: 3.7
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 25 Jan 2013, 06:05
Is 1 + x + x^2 + … + x^10 positive?

1) x < -1
2) x^2 > 2
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 58453
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 25 Jan 2013, 06:34
Manager
Manager
avatar
Joined: 02 Jan 2013
Posts: 54
GMAT 1: 750 Q51 V40
GPA: 3.2
WE: Consulting (Consulting)
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 26 Jan 2013, 05:40
1
This is another one of those weird problems, where neither (1) nor (2) are necessary.


The expression 1 + x + xˆ2+...+ x^10 is ALWAYS positive, for any real value of x. PERIOD.

The best way to prove this, is transforming the expression in the GP sum (xˆ11 - 1)/(x-1) already mentioned.
Manager
Manager
avatar
B
Joined: 10 Mar 2014
Posts: 180
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 27 Apr 2014, 10:59
Bunuel wrote:
gmatpapa wrote:
Is \(1+x+x^2+x^3+....+x^{10}\)positive?

1. \(x<-1\)
2. \(x^2>2\)

Source: GMAT Club Hardest problems.


Is \(1+(x+x^2)+(x^3+x^4)+...+(x^9+x^{10})>0\)?

(1) \(x<-1\): \(x+x^2>0\) (x<-1 meas that x^2>|x|), \(x^3+x^4>0\), ..., \(x^9+x^{10}>0\), so the sum is also more than zero. Sufficient.

(2) \(x^2>2\): even if x itself is negative then still as above: \(x+x^2>0\), \(x^3+x^4>0\), ..., \(x^9+x^{10}>0\), so the sum is also more than zero. Sufficient.

Answer: D.


Hi Bunnel,

According to st1 (x<-1)

so can write this as

1+ (-2) + (-2)^2+ (-2)^3+ ---(-2)^10

can I use above as geometric progression. ( dont include 1 in seried we will add it lastly)

If I will use this in gp then I will get result as <0 bcz first term is -ve

Please clarify.

Thanks
Director
Director
User avatar
B
Affiliations: GMATQuantum
Joined: 19 Apr 2009
Posts: 599
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 27 Apr 2014, 13:24
I agree with @caioguima, this is not a very good problem. GMAT won't give you a problem where the statements are completely redundant, and the answer to the question is already a definite Yes. At least, I haven't seen an official GMAT question that follows this format, please correct me if anyone has seen such an example.

To expand on @caioguima, the expression 1+x+x^2+x^3+....+x^10 is positive for all values of x greater than or equal to zero. If we rewrite this expression using the geometric series format, it becomes (x^11-1)/(x-1)[skipping those details here], and if we now consider the case of x<0, then both numerator and denominator are negative, making the expression positive for all values of x<0. Therefore, 1+x+x^2+x^3+....+x^10 is positive for all values of x. And the statements become redundant at this stage, which I have never seen on the GMAT.

Cheers,
Dabral
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 13265
Re: Is 1+x+x^2+x^3+....+x^10 positive?  [#permalink]

Show Tags

New post 05 Jul 2019, 00:34
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: Is 1+x+x^2+x^3+....+x^10 positive?   [#permalink] 05 Jul 2019, 00:34
Display posts from previous: Sort by

Is 1+x+x^2+x^3+....+x^10 positive?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne