It is currently 12 Dec 2017, 23:37

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Is a+b>c? 1) a, b, and c represent three different lengths of the s

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Senior SC Moderator
User avatar
D
Joined: 14 Nov 2016
Posts: 1254

Kudos [?]: 1362 [0], given: 440

Location: Malaysia
GMAT ToolKit User Premium Member CAT Tests
Is a+b>c? 1) a, b, and c represent three different lengths of the s [#permalink]

Show Tags

New post 23 Feb 2017, 18:07
5
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

43% (00:39) correct 57% (00:35) wrong based on 124 sessions

HideShow timer Statistics

Is \(a+b>c\)?

1) a, b, and c represent three different lengths of the sides of a certain triangle

2) \(a^2+b^2=c^2\)
[Reveal] Spoiler: OA

_________________

"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."

Rules for posting in verbal forum | Please DO NOT post short answer in your post!

Kudos [?]: 1362 [0], given: 440

Director
Director
User avatar
P
Joined: 05 Mar 2015
Posts: 966

Kudos [?]: 301 [0], given: 41

Re: Is a+b>c? 1) a, b, and c represent three different lengths of the s [#permalink]

Show Tags

New post 24 Feb 2017, 07:07
AustinKL wrote:
Is \(a+b>c\)?

1) a, b, and c represent three different lengths of the sides of a certain triangle

2) \(a^2+b^2=c^2\)



(1) sum of any two sides of triangle is always> third side......suff

(2) if a= 3 , b= 4 and c= 5 ...Yes
if a= 3 , b= -4 and c= 5 ...No
insuff

Ans A

Kudos [?]: 301 [0], given: 41

Senior SC Moderator
User avatar
D
Joined: 14 Nov 2016
Posts: 1254

Kudos [?]: 1362 [0], given: 440

Location: Malaysia
GMAT ToolKit User Premium Member CAT Tests
Re: Is a+b>c? 1) a, b, and c represent three different lengths of the s [#permalink]

Show Tags

New post 04 May 2017, 18:08
ziyuen wrote:
Is \(a+b>c\)?

(1) a, b, and c represent three different lengths of the sides of a certain triangle

(2) \(a^2+b^2=c^2\)


OFFICIAL EXPLANATION


According to the characteristics of a certain triangle, if you let a, b, and c represent the 3 different side lengths of a triangle, \(a-b<c<a+b\) appears often.

In other words, the sum of the lengths of the two sides is longer than the length of the other side.

(1) The condition is always yes. Sufficient.

(2) It is not about the Pythagorean Theorem of a right triangle. If (a,b,c)=(3,4,5), it is yes, but if (-3,-4,5), it is no. Insufficient.

Bunuel & MathRevolution Could the side of a triangle be negative value?
_________________

"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."

Rules for posting in verbal forum | Please DO NOT post short answer in your post!

Kudos [?]: 1362 [0], given: 440

Director
Director
User avatar
P
Joined: 05 Mar 2015
Posts: 966

Kudos [?]: 301 [0], given: 41

Re: Is a+b>c? 1) a, b, and c represent three different lengths of the s [#permalink]

Show Tags

New post 04 May 2017, 18:24
ziyuen wrote:
ziyuen wrote:
Is \(a+b>c\)?

(1) a, b, and c represent three different lengths of the sides of a certain triangle

(2) \(a^2+b^2=c^2\)


OFFICIAL EXPLANATION


According to the characteristics of a certain triangle, if you let a, b, and c represent the 3 different side lengths of a triangle, \(a-b<c<a+b\) appears often.

In other words, the sum of the lengths of the two sides is longer than the length of the other side.

(1) The condition is always yes. Sufficient.

(2) It is not about the Pythagorean Theorem of a right triangle. If (a,b,c)=(3,4,5), it is yes, but if (-3,-4,5), it is no. Insufficient.

Bunuel & MathRevolution Could the side of a triangle be negative value?


ziyuen

hope they will reply!!

but for the instance, please let me know from where u r assuming the option 2 relates to any triangle??
a,b,c are independent values and they are not meant for any triangle

hope it helps :)

Kudos [?]: 301 [0], given: 41

Senior SC Moderator
User avatar
D
Joined: 14 Nov 2016
Posts: 1254

Kudos [?]: 1362 [0], given: 440

Location: Malaysia
GMAT ToolKit User Premium Member CAT Tests
Re: Is a+b>c? 1) a, b, and c represent three different lengths of the s [#permalink]

Show Tags

New post 04 May 2017, 18:55
rohit8865 wrote:
ziyuen wrote:
ziyuen wrote:
Is \(a+b>c\)?

(1) a, b, and c represent three different lengths of the sides of a certain triangle

(2) \(a^2+b^2=c^2\)


OFFICIAL EXPLANATION


According to the characteristics of a certain triangle, if you let a, b, and c represent the 3 different side lengths of a triangle, \(a-b<c<a+b\) appears often.

In other words, the sum of the lengths of the two sides is longer than the length of the other side.

(1) The condition is always yes. Sufficient.

(2) It is not about the Pythagorean Theorem of a right triangle. If (a,b,c)=(3,4,5), it is yes, but if (-3,-4,5), it is no. Insufficient.

Bunuel & MathRevolution Could the side of a triangle be negative value?


ziyuen

hope they will reply!!

but for the instance, please let me know from where u r assuming the option 2 relates to any triangle??
a,b,c are independent values and they are not meant for any triangle

hope it helps :)


rohit8865

https://gmatclub.com/forum/math-triangles-87197.html

• A Pythagorean triple consists of three positive integers \(a\), \(b\), and \(c\), such that \(a^2 + b^2 = c^2\). Such a triple is commonly written \((a, b, c)\), and a well-known example is \((3, 4, 5)\). If \((a, b, c)\) is a Pythagorean triple, then so is \((ka, kb, kc)\) for any positive integer \(k\). There are 16 primitive Pythagorean triples with c ≤ 100:
(3, 4, 5) (5, 12, 13) (7, 24, 25) (8, 15, 17) (9, 40, 41) (11, 60, 61) (12, 35, 37) (13, 84, 85) (16, 63, 65) (20, 21, 29) (28, 45, 53) (33, 56, 65) (36, 77, 85) (39, 80, 89) (48, 55, 73) (65, 72, 97).
_________________

"Be challenged at EVERY MOMENT."

“Strength doesn’t come from what you can do. It comes from overcoming the things you once thought you couldn’t.”

"Each stage of the journey is crucial to attaining new heights of knowledge."

Rules for posting in verbal forum | Please DO NOT post short answer in your post!

Kudos [?]: 1362 [0], given: 440

Manager
Manager
avatar
B
Joined: 16 Jan 2017
Posts: 66

Kudos [?]: 3 [0], given: 2

GMAT 1: 620 Q46 V29
Re: Is a+b>c? 1) a, b, and c represent three different lengths of the s [#permalink]

Show Tags

New post 05 May 2017, 13:41
I am confused as to the explanation given by some members. how can the side of a triangle be negative??

Kudos [?]: 3 [0], given: 2

Intern
Intern
avatar
B
Joined: 25 Apr 2016
Posts: 25

Kudos [?]: [0], given: 199

Concentration: Entrepreneurship, Marketing
Re: Is a+b>c? 1) a, b, and c represent three different lengths of the s [#permalink]

Show Tags

New post 11 May 2017, 17:58
rohit8865 wrote:
AustinKL wrote:
Is \(a+b>c\)?

1) a, b, and c represent three different lengths of the sides of a certain triangle

2) \(a^2+b^2=c^2\)



(1) sum of any two sides of triangle is always> third side......suff

(2) if a= 3 , b= 4 and c= 5 ...Yes
if a= 3 , b= -4 and c= 5 ...No
insuff

Ans A

How can the side of a triangle be negative?

Kudos [?]: [0], given: 199

Manager
Manager
avatar
B
Joined: 27 Jun 2015
Posts: 51

Kudos [?]: 9 [0], given: 49

WE: Information Technology (Computer Software)
GMAT ToolKit User
Re: Is a+b>c? 1) a, b, and c represent three different lengths of the s [#permalink]

Show Tags

New post 05 Oct 2017, 18:44
ishitam wrote:
rohit8865 wrote:
AustinKL wrote:
Is \(a+b>c\)?

1) a, b, and c represent three different lengths of the sides of a certain triangle

2) \(a^2+b^2=c^2\)



(1) sum of any two sides of triangle is always> third side......suff

(2) if a= 3 , b= 4 and c= 5 ...Yes
if a= 3 , b= -4 and c= 5 ...No
insuff

Ans A

How can the side of a triangle be negative?


ishitam ,
Please consider the 2nd statement, independently, as just another algebraic equation. Yes it does represent Pythagoras theorem, but there is no where mentioned that a, b,c are sides of triangle in question stem.
2nd is a classic trap statement, wherein we do not completely remove the context given in statement 1 and assume something which is not present in statement 2.

Kudos [?]: 9 [0], given: 49

Senior Manager
Senior Manager
avatar
B
Joined: 02 Apr 2014
Posts: 258

Kudos [?]: 17 [0], given: 466

Is a+b>c? 1) a, b, and c represent three different lengths of the s [#permalink]

Show Tags

New post 30 Nov 2017, 13:34
a+b > c?

Statement 1:
Property of a triangle, sum of any two sides is greater than the third side, hence a + b > c, sufficient

Statement 2:
if a, b, c -> pythogorian triplet, say {a = 3, b = 4, c = 5}, then a + b > c,
if a = 0, b = 0, c = 0, then \(a^2 + b^2 = c^2\), but a +b = c, not sufficient

Answer (A)

Kudos [?]: 17 [0], given: 466

Is a+b>c? 1) a, b, and c represent three different lengths of the s   [#permalink] 30 Nov 2017, 13:34
Display posts from previous: Sort by

Is a+b>c? 1) a, b, and c represent three different lengths of the s

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.