Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

(1) n^3 – n is a multiple of 3 --> \(n^3-n=n(n^2-1)=(n-1)n(n+1)=3q\). Now, \(n-1\), \(n\), and \(n+1\) are 3 consecutive integers and one of them must be multiple of 3, so no wonder that their product is a multiple of 3. However we don't know which one is a multiple of 3. Not sufficient.

(2) n^3 + 2n^2+ n is a multiple of 3 --> \(n^3 + 2n^2+ n=n(n^2+2n+1)=n(n+1)^2=3p\) --> so either \(n\) or \(n+1\) is a multiple of 3, as out of 3 consecutive integers \(n-1\), \(n\), and \(n+1\) only one is a multiple of 3 then knowing that it's either \(n\) or \(n+1\) tells us that \(n-1\) IS NOT multiple of 3. Sufficient.

Re: Is positive integer n – 1 a multiple of 3? [#permalink]

Show Tags

12 Sep 2012, 06:17

1

This post received KUDOS

Bunuel wrote:

ShreeCS wrote:

Is positive integer n – 1 a multiple of 3?

(1) n^3 – n is a multiple of 3

(2) n^3 + 2n^2+ n is a multiple of 3

Is positive integer n – 1 a multiple of 3?

(1) n^3 – n is a multiple of 3 --> \(n^3-n=n(n^2-1)=(n-1)n(n+1)=3q\). Now, \(n-1\), \(n\), and \(n+1\) are 3 consecutive integers and one of them must be multiple of 3, so no wonder that their product is a multiple of 3. However we don't know which one is a multiple of 3. Not sufficient.

(2) n^3 + 2n^2+ n is a multiple of 3 --> \(n^3 + 2n^2+ n=n(n^2+2n+1)=n(n+1)^2=3p\) --> so either \(n\) or \(n+1\) is a multiple of 3, as out of 3 consecutive integers \(n-1\), \(n\), and \(n+1\) only one is a multiple of 3 then knowing that it's either \(n\) or \(n+1\) tells us that \(n-1\) IS NOT multiple of 3. Sufficient.

Answer: B.

Hi Bunuel, I got a question. "Is positive integer n-1 a multiple of 3" doesn't require a specific answer? Through the Statement 2 we figure out that n-1 is a multiple of 3 only if n+1 would be as well, and the answer is yes, conversely if n would be a multiple of 3, in this case the answer is no. Could me please explain better this doubt Thank you

(1) n^3 – n is a multiple of 3 --> \(n^3-n=n(n^2-1)=(n-1)n(n+1)=3q\). Now, \(n-1\), \(n\), and \(n+1\) are 3 consecutive integers and one of them must be multiple of 3, so no wonder that their product is a multiple of 3. However we don't know which one is a multiple of 3. Not sufficient.

(2) n^3 + 2n^2+ n is a multiple of 3 --> \(n^3 + 2n^2+ n=n(n^2+2n+1)=n(n+1)^2=3p\) --> so either \(n\) or \(n+1\) is a multiple of 3, as out of 3 consecutive integers \(n-1\), \(n\), and \(n+1\) only one is a multiple of 3 then knowing that it's either \(n\) or \(n+1\) tells us that \(n-1\) IS NOT multiple of 3. Sufficient.

Answer: B.

Hi Bunuel, I got a question. "Is positive integer n-1 a multiple of 3" doesn't require a specific answer? Through the Statement 2 we figure out that n-1 is a multiple of 3 only if n+1 would be as well, and the answer is yes, conversely if n would be a multiple of 3, in this case the answer is no. Could me please explain better this doubt Thank you

In a Yes/No Data Sufficiency question, statement(s) is sufficient if the answer is “always yes” or “always no” while a statement(s) is insufficient if the answer is "sometimes yes" and "sometimes no".

The question asks whether n-1 is a multiple of 3, and from (2) we have a definite NO answer to this question, so this statement is sufficient.

Re: Is positive integer n – 1 a multiple of 3? [#permalink]

Show Tags

04 Sep 2014, 03:56

2

This post received KUDOS

(1): Pick numbers. If n=5 then 5³-5 = 120 = multiple of 3, but n-1 = 4 no multiple of 3. And 4³-4 = 60 = multiple of 3 and 4-1 = 3 which is a multiple of 3. Insufficient. This will stay IS so the answer will be B or E.

(2) This is a bit trickier. First, simplify the expression: n³+2n²+n = n(n²+2n+1) = n(n+1)² --> Multiple of 3. For this to be a multiple of 3, EITHER n OR n+1 is a multiple of 3 (both is not possible since they are consecutive integers). Now pick numbers again: if n=5, then n+1 = 6 = multiple of 3, which satisfies the equation. If n=3, then n is a multiple of 3, which again satisfies the equation. Note that in both cases n - 1 is NOT a multiple of 3, which answers the question is n-1 a multiple of 3?

Re: Is positive integer n – 1 a multiple of 3? [#permalink]

Show Tags

26 Jan 2016, 02:22

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Is positive integer n – 1 a multiple of 3? [#permalink]

Show Tags

26 Jan 2016, 07:56

ShreeCS wrote:

Is positive integer n – 1 a multiple of 3?

(1) n^3 – n is a multiple of 3

(2) n^3 + 2n^2+ n is a multiple of 3

WKT 0 is a multiple of any number. (3*0=0) Fact (1) \(n^3-n=0\) \(n(n^2-1)=0\) n=0,1 or -1. When n=0 ans is NO; when n=1 ans is YES. Hence INSUFF Fact (2) \(n^3+2n^2+n=0\) \(n(n^2+2n+1)=0\) \(n(n+1)(n+1)=0\) n=0,-1. When n=0 ans is NO; when n=-1 ans is NO. Hence SUFF Ans: B
_________________

Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution.

Is positive integer n – 1 a multiple of 3?

(1) n^3 – n is a multiple of 3

(2) n^3 + 2n^2+ n is a multiple of 3

When you modify the original condition and the question, they become n-1=3t(t is a positive integer)? --> n=3t+1?. There is 1 variable(n), which should match with the number of equations. So you need 1 equation. For 1) 1 equation, for 2) 1 equation, which is likely to make D the answer. For 1), it becomes n^3-n=(n-1)n(n+1). The multiplication of three consecutive integers is always a multiple of 6. So, n=3 -> no, n=4 -> yes, which is not sufficient. For 2), n^3 + 2n^2+ n=3k(k is a positive integer) → n(n+1)^2=3k. In n(n+1)^2=3k, either n=3k or n=3k-1 should be valid. So, it is always no and sufficient. Therefore, the answer is B.

--> For cases where we need 1 more equation, such as original conditions with “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations”, we have 1 equation each in both 1) and 2). Therefore, there is 59 % chance that D is the answer, while A or B has 38% chance and C or E has 3% chance. Since D is most likely to be the answer using 1) and 2) separately according to DS definition. Obviously there may be cases where the answer is A, B, C or E.
_________________

There’s something in Pacific North West that you cannot find anywhere else. The atmosphere and scenic nature are next to none, with mountains on one side and ocean on...

This month I got selected by Stanford GSB to be included in “Best & Brightest, Class of 2017” by Poets & Quants. Besides feeling honored for being part of...

Joe Navarro is an ex FBI agent who was a founding member of the FBI’s Behavioural Analysis Program. He was a body language expert who he used his ability to successfully...