It is currently 20 Nov 2017, 07:14

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Is sqrt(x-5)^2 = 5-x?

Author Message
TAGS:

### Hide Tags

Retired Moderator
Status: 2000 posts! I don't know whether I should feel great or sad about it! LOL
Joined: 04 Oct 2009
Posts: 1628

Kudos [?]: 1120 [3], given: 109

Location: Peru
Schools: Harvard, Stanford, Wharton, MIT & HKS (Government)
WE 1: Economic research
WE 2: Banking
WE 3: Government: Foreign Trade and SMEs

### Show Tags

06 Sep 2010, 12:20
3
KUDOS
6
This post was
BOOKMARKED
00:00

Difficulty:

65% (hard)

Question Stats:

56% (01:27) correct 44% (01:21) wrong based on 228 sessions

### HideShow timer Statistics

Is $$\sqrt {(x-5)^2} = 5-x$$ ?

(1) -x|x| > 0
(2) 5 - x > 0

PS. Is always this true?: $$\sqrt{x^2}$$ = lxl ?
[Reveal] Spoiler: OA

_________________

"Life’s battle doesn’t always go to stronger or faster men; but sooner or later the man who wins is the one who thinks he can."

My Integrated Reasoning Logbook / Diary: http://gmatclub.com/forum/my-ir-logbook-diary-133264.html

GMAT Club Premium Membership - big benefits and savings

Kudos [?]: 1120 [3], given: 109

Math Expert
Joined: 02 Sep 2009
Posts: 42264

Kudos [?]: 132772 [3], given: 12372

Re: Is sqrt(x-5)^2 = 5-x? [#permalink]

### Show Tags

06 Sep 2010, 12:30
3
KUDOS
Expert's post
5
This post was
BOOKMARKED
metallicafan wrote:
Is $$sqrt(x-5)^2 = 5-x?$$

(1) -xlxl > 0
(2) 5-x > 0

PS. Is always this true?: $$sqrt{x^2}$$ = lxl ?

Is $$\sqrt{(x-5)^2}=5-x$$?

Remember: $$\sqrt{x^2}=|x|$$.

So "is $$\sqrt{(x-5)^2}=5-x$$?" becomes: is $$|x-5|=5-x$$?

$$|x-5|=5-x$$ is true only for $$x\leq{5}$$, as in this case $$\{LHS=|x-5|=5-x\}=\{RHS=5-x\}$$. So we have that if $$x\leq{5}$$, then $$|x-5|=5-x$$ is true.

Basically question asks is $$x\leq{5}$$?

(1) $$-x|x| > 0$$ --> $$|x|$$ is never negative (positive or zero), so in order to have $$-x|x| > 0$$, $$-x$$ must be positive $$-x>0$$ --> $$x<0$$, so $$x$$ is less than 5 too. Sufficient.

(2) $$5-x>0$$ --> $$x<5$$. Sufficient.

Hope it helps.

P.S. Explanation of: $$\sqrt{x^2}=|x|$$.

The point here is that as square root function can not give negative result then $$\sqrt{some \ expression}\geq{0}$$.

So $$\sqrt{x^2}\geq{0}$$. But what does $$\sqrt{x^2}$$ equal to?

Let's consider following examples:
If $$x=5$$ --> $$\sqrt{x^2}=\sqrt{25}=5=x=positive$$;
If $$x=-5$$ --> $$\sqrt{x^2}=\sqrt{25}=5=-x=positive$$.

So we got that:
$$\sqrt{x^2}=x$$, if $$x\geq{0}$$;
$$\sqrt{x^2}=-x$$, if $$x<0$$.

What function does exactly the same thing? The absolute value function: $$|x|=x$$, if $$x\geq{0}$$ and $$|x|=-x$$, if $$x<0$$. That is why $$\sqrt{x^2}=|x|$$.
_________________

Kudos [?]: 132772 [3], given: 12372

Manager
Status: Last few days....Have pressed the throttle
Joined: 20 Jun 2010
Posts: 67

Kudos [?]: 62 [0], given: 27

WE 1: 6 years - Consulting
Re: Is sqrt(x-5)^2 = 5-x? [#permalink]

### Show Tags

07 Sep 2010, 02:44
Bunuel wrote:
metallicafan wrote:
Is $$sqrt(x-5)^2 = 5-x?$$

(1) -xlxl > 0
(2) 5-x > 0

PS. Is always this true?: $$sqrt{x^2}$$ = lxl ?

Is $$\sqrt{(x-5)^2}=5-x$$?

Remember: $$\sqrt{x^2}=|x|$$.

So "is $$\sqrt{(x-5)^2}=5-x$$?" becomes: is $$|x-5|=5-x$$?

$$|x-5|=5-x$$ is true only for $$x\leq{5}$$, as in this case $$\{LHS=|x-5|=5-x\}=\{RHS=5-x\}$$. So we have that if $$x\leq{5}$$, then $$|x-5|=5-x$$ is true.

Basically question asks is $$x\leq{5}$$?

(1) $$-x|x| > 0$$ --> $$|x|$$ is never negative (positive or zero), so in order to have $$-x|x| > 0$$, $$-x$$ must be positive $$-x>0$$ --> $$x<0$$, so $$x$$ is less than 5 too. Sufficient.

(2) $$5-x>0$$ --> $$x<5$$. Sufficient.

Hope it helps.

Hi Bunuel,

$$-x|x| > 0$$ --> $$|x|$$ is never negative (positive or zero), so in order to have $$-x|x| > 0$$, $$-x$$ must be positive $$-x>0$$ --> $$x<0$$, so $$x$$ is less than 5 too

Can't we solve it as follows:
As $$|x|$$ is never negative -> $$-x|x| > 0$$ = -x*x = -x^2 >0 = x^2<0 (multiplying by -ve sign and flipping sign)
x^2<0 =>
$$sqrt{x^2}$$ <0
=> lxl <0 (as $$sqrt{x^2}$$ =lxl )

Since lxl cannot be negative and lxl <0 that implies X<0

I have reached to same conclusion as yours but wanted to confirm if my approach is right. Please explain.Thanks
_________________

Consider giving Kudos if my post helps in some way

Kudos [?]: 62 [0], given: 27

Math Expert
Joined: 02 Sep 2009
Posts: 42264

Kudos [?]: 132772 [0], given: 12372

Re: Is sqrt(x-5)^2 = 5-x? [#permalink]

### Show Tags

07 Sep 2010, 05:01
oldstudent wrote:
Bunuel wrote:
metallicafan wrote:
Is $$sqrt(x-5)^2 = 5-x?$$

(1) -xlxl > 0
(2) 5-x > 0

PS. Is always this true?: $$sqrt{x^2}$$ = lxl ?

Is $$\sqrt{(x-5)^2}=5-x$$?

Remember: $$\sqrt{x^2}=|x|$$.

So "is $$\sqrt{(x-5)^2}=5-x$$?" becomes: is $$|x-5|=5-x$$?

$$|x-5|=5-x$$ is true only for $$x\leq{5}$$, as in this case $$\{LHS=|x-5|=5-x\}=\{RHS=5-x\}$$. So we have that if $$x\leq{5}$$, then $$|x-5|=5-x$$ is true.

Basically question asks is $$x\leq{5}$$?

(1) $$-x|x| > 0$$ --> $$|x|$$ is never negative (positive or zero), so in order to have $$-x|x| > 0$$, $$-x$$ must be positive $$-x>0$$ --> $$x<0$$, so $$x$$ is less than 5 too. Sufficient.

(2) $$5-x>0$$ --> $$x<5$$. Sufficient.

Hope it helps.

Hi Bunuel,

$$-x|x| > 0$$ --> $$|x|$$ is never negative (positive or zero), so in order to have $$-x|x| > 0$$, $$-x$$ must be positive $$-x>0$$ --> $$x<0$$, so $$x$$ is less than 5 too

Can't we solve it as follows:
As $$|x|$$ is never negative -> $$-x|x| > 0$$= -x*x = -x^2 >0 = x^2<0 (multiplying by -ve sign and flipping sign)
x^2<0 =>
$$sqrt{x^2}$$ <0

=> lxl <0 (as $$sqrt{x^2}$$ =lxl )

Since lxl cannot be negative and lxl <0 that implies X<0

I have reached to same conclusion as yours but wanted to confirm if my approach is right. Please explain.Thanks

This approach is not right.

The red parts are not correct.

$$-x|x| > 0$$ can not be written as $$-x*x>0$$, as $$|x|\geq{0}$$ does not mean $$x$$ itself can not be negative --> $$|x|=x$$ if $$x\geq{0}$$ and $$|x|=-x$$ if $$x\leq{0}$$, so when you are writing $$x$$ instead of $$|x|$$ you are basically assuming that $$x\geq{0}$$ and then in the end get the opposite result $$x<0$$.

Next, $$x^2<0$$ has no solution, square of a number can not be negative, so no $$x$$ can make this inequality hold true.
_________________

Kudos [?]: 132772 [0], given: 12372

Manager
Joined: 17 Mar 2010
Posts: 171

Kudos [?]: 211 [0], given: 9

Re: Is sqrt(x-5)^2 = 5-x? [#permalink]

### Show Tags

07 Sep 2010, 23:42
I think for this question we dont need any statement... without statement itself it is possible to say if the equality is correct or wrong. Can someone comment on this... Bunuel please?

Kudos [?]: 211 [0], given: 9

Math Expert
Joined: 02 Sep 2009
Posts: 42264

Kudos [?]: 132772 [0], given: 12372

Re: Is sqrt(x-5)^2 = 5-x? [#permalink]

### Show Tags

08 Sep 2010, 06:59
amitjash wrote:
I think for this question we dont need any statement... without statement itself it is possible to say if the equality is correct or wrong. Can someone comment on this... Bunuel please?

This not correct. $$x$$ must be less than or equal to 5 inequality $$\sqrt{(x-5)^2}=5-x$$ to hold true. For example if $$x=10>5$$ then $$\sqrt{(x-5)^2}=5\neq{-5}=5-x$$
_________________

Kudos [?]: 132772 [0], given: 12372

Manager
Joined: 19 Sep 2010
Posts: 172

Kudos [?]: 99 [0], given: 18

Re: Is sqrt(x-5)^2 = 5-x? [#permalink]

### Show Tags

16 Oct 2010, 09:01
+1 for D...nice explanation Bunuel..

Kudos [?]: 99 [0], given: 18

Senior Manager
Joined: 13 Aug 2012
Posts: 458

Kudos [?]: 558 [0], given: 11

Concentration: Marketing, Finance
GPA: 3.23
Re: Is sqrt(x-5)^2 = 5-x? [#permalink]

### Show Tags

22 Jan 2013, 01:01
Analyzing the question first
$$\sqrt{{(x-5)}^2} = 5-x$$
$$|x-5| = 5-x$$ The question is asking whether 5-x >= 0? or x <= 5?

1. -x|x| > 0 means x is negative which is always less than 5.. SUFFICIENT
2. 5-x < 0 means x < 5... SUFFICIENT

_________________

Impossible is nothing to God.

Kudos [?]: 558 [0], given: 11

Non-Human User
Joined: 09 Sep 2013
Posts: 15638

Kudos [?]: 283 [0], given: 0

Re: Is sqrt(x-5)^2 = 5-x? [#permalink]

### Show Tags

26 Sep 2015, 09:42
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Kudos [?]: 283 [0], given: 0

Non-Human User
Joined: 09 Sep 2013
Posts: 15638

Kudos [?]: 283 [0], given: 0

Re: Is sqrt(x-5)^2 = 5-x? [#permalink]

### Show Tags

19 Jan 2017, 10:43
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Kudos [?]: 283 [0], given: 0

Re: Is sqrt(x-5)^2 = 5-x?   [#permalink] 19 Jan 2017, 10:43
Display posts from previous: Sort by