GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

It is currently 22 Feb 2020, 02:54

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 61385
Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 06 Nov 2019, 00:19
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

42% (02:00) correct 58% (02:03) wrong based on 183 sessions

HideShow timer Statistics

Manager
Manager
avatar
S
Joined: 30 Nov 2017
Posts: 64
GMAT 1: 690 Q49 V35
Premium Member
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 07 Nov 2019, 01:10
4
Raxit85 wrote:
Can anyone please explain regarding x <=3 rather than x >=3??

Posted from my mobile device


I also got this wrong for the same reason. Looking back makes sense:

(x—3)(x—7) >=0

LHS will be positive only when (x-3) and (x-7) have same signs. So when we take x>=3 but less than 7 i.e let’s say x = 4 then LHS is (4-3)*(4-7)= -3 which isn’t correct. Hence the only set of nos which satisfy the above equation is either x>=7 or x<=3.
VP
VP
avatar
V
Joined: 20 Jul 2017
Posts: 1325
Location: India
Concentration: Entrepreneurship, Marketing
WE: Education (Education)
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 06 Nov 2019, 01:54
2
(1) |2x - 12| < 10
—> -10 < 2x - 12 < 10
—> - 10 + 12 < 2x - 12 + 12 < 10 + 12
—> 2 < 2x < 22
—> 1 < x < 11
—> x > 0 always —> Sufficient

(2) x^2 - 10x ≥ -21
—> x^2 - 10x + 21 ≥ 0
—> (x - 7)(x - 3) ≥ 0
—> x ≤ 3 or x ≥ 7

Since x ≤ 3, it can take values less than zero also —> Insufficient

IMO Option A

Posted from my mobile device
Senior Manager
Senior Manager
avatar
P
Joined: 01 Mar 2019
Posts: 443
Location: India
Concentration: Strategy, Social Entrepreneurship
Schools: Ross '22, ISB '20, NUS '20
GPA: 4
Reviews Badge
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 06 Nov 2019, 02:36
1
(1) |2x-12|<10

From this we can get 11>x>1

Sufficient


(2) x^2-10x >= -21

We get (x-7)(x-3)>=0

x>=7 or x<=3
Not sufficient

OA:A

Posted from my mobile device
VP
VP
avatar
P
Joined: 24 Nov 2016
Posts: 1224
Location: United States
CAT Tests
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 06 Nov 2019, 03:38
1
Quote:
Is \(x>0\)?

(1) \(|2x−12|<10\)
(2) \(x^2−10x≥−21\)


(1) \(|2x−12|<10\) sufic.

\(|2x−12|<10…(2x-12)^2<10^2…4x^2+44-48x<0…x^2-12x+11<0…(x-11)(x-1)<0\)
\((x-11)(x-1)<0…[less.than.sign=inside.range]…1<x<11\)

(2) \(x^2−10x≥−21\) insufic.

\(x^2−10x≥−21…x^2-10x+21≥0…(x-7)(x-3)≥0\)
\((x-7)(x-3)≥0…[greater.than.sign=outside.range]…x≥3…or…x≤7\)
\(x=[-9,-1,0,1,2,3,7,8,100…]\)

Answer (A)
CR Forum Moderator
avatar
P
Joined: 18 May 2019
Posts: 709
GMAT ToolKit User Premium Member CAT Tests
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 06 Nov 2019, 08:41
1
We are to determine if x>0?

1. |2x-12|<10
when x>0, 2x-12<10
hence x<11

when x<0
-(2x-12)<10
2x-12>-10
x>1
Hence x>1
This results in a range of 1<x<11
Statement 1 alone is therefore sufficient since x>1 in the range above.

2. x^2 -10x ≥-21
x^2 -10x + 21≥0
(x-7)(x-3)≥0
This results in the range x≥7 and x≤3
This is insufficient because when x≥7 then x is always greater than 0. But when x≤3, then x is not always greater than 0, because x can be -1, which is less than 0.

The answer is therefore A.
Director
Director
avatar
P
Joined: 25 Jul 2018
Posts: 562
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 06 Nov 2019, 10:11
1
Is x >0?

(Statement1): -10 < 2x—12< 10
—> 2< 2x< 22
1 < x < 11
Sufficient

(Statement2): \(x^{2} —10x+ 21>=0\)
(x—3)(x—7) >=0

x <=3 and x>=7
—> If x=2, then YES
—> If x= —1, then NO
Insufficient

The answer is A

Posted from my mobile device
Manager
Manager
avatar
G
Joined: 31 Oct 2015
Posts: 95
GMAT ToolKit User
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 06 Nov 2019, 14:52
1
Question : is X>0

(1) Given : |2x−12|<10
i.e |x-6|<5
This implies 1<x<11

Statement 1 is sufficient

(2) x^2−10x≥−21
i.e x^2−10x+21≥0
This imples x<3 or x>7
According to this X could take positive and negative values.

Therefore answer is A.
Director
Director
avatar
P
Joined: 22 Feb 2018
Posts: 527
GMAT ToolKit User
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 07 Nov 2019, 00:48
1
Can anyone please explain regarding x <=3 rather than x >=3??

Posted from my mobile device
Intern
Intern
avatar
B
Joined: 20 Jul 2015
Posts: 38
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 14 Nov 2019, 07:28
1
Bunuel wrote:

Competition Mode Question



Is \(x > 0\)?

(1) \(|2x - 12| < 10\)
(2) \(x^2 - 10x \geq {-21}\)


Are You Up For the Challenge: 700 Level Questions



Bunuel

Please categorize the question in DS section.
Manager
Manager
avatar
S
Joined: 30 Nov 2017
Posts: 64
GMAT 1: 690 Q49 V35
Premium Member
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 06 Nov 2019, 00:54
Is x>0x>0?

(1) |2x−12|<10|2x−12|<10
a.
Solving for x:
2x-12<10
2x<22
x<11

Or
2x-12>-10
2x>2
x>1

From above we get 1<x<11. Ans Yes. Sufficient
(2) x2−10x≥−21
(x-3)(x-7)≥0
x≥3 or x≥7. Yes. Sufficient.

Ans D
Senior Manager
Senior Manager
avatar
G
Joined: 23 Nov 2018
Posts: 253
GMAT 1: 650 Q49 V28
GPA: 4
Reviews Badge CAT Tests
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 06 Nov 2019, 01:08
Is x>0?

(1) |2x−12|<10

Ix-6I<5

-1<x<11

x=-0.5 No
X=6 yes

(2) x^2−10x≥−21

x^2-10x+21≥0

x≤3; x≥7

X=0 no
X=7 yes

combining both the options:

-1<x≤3; 7≤x<11

E is the correct option!

_________________
.
GMAT Club Legend
GMAT Club Legend
User avatar
V
Joined: 18 Aug 2017
Posts: 5894
Location: India
Concentration: Sustainability, Marketing
GPA: 4
WE: Marketing (Energy and Utilities)
GMAT ToolKit User Reviews Badge CAT Tests
Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post Updated on: 07 Nov 2019, 00:55
Is x>0?

(1) |2x−12|<10
(2) x2−10x≥−21

#1
2x-12<10
2x<22
x<11
and
-2x+12<10
-2x<-2
x>1
sufficient

1<x<11
yes insufficient
#2
x2−10x≥−21
(x-7)(x-3)>=0
x>=7 and x<=3
insufficient
IMO A

Originally posted by Archit3110 on 06 Nov 2019, 01:37.
Last edited by Archit3110 on 07 Nov 2019, 00:55, edited 1 time in total.
Director
Director
avatar
P
Joined: 22 Feb 2018
Posts: 527
GMAT ToolKit User
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 06 Nov 2019, 09:16
Is x>0?
Is x +ve ?

(1) |2x−12|<10, 2x-12 <10 or -2x+12<10, 2x<22 or 2x>2, x<11 or x>1, x = +ve. Sufficient.
2) x^2−10x≥−21, x^2-10x+21≥0, x-7≥0 or x-3≥0, x≥7 or x≥3, x = +ve, sufficient.

Imo. D
Director
Director
User avatar
D
Joined: 07 Mar 2019
Posts: 706
Location: India
GMAT 1: 580 Q43 V27
WE: Sales (Energy and Utilities)
CAT Tests
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 06 Nov 2019, 10:04
Is x > 0?

(1) |2x − 12| < 10
|2||x − 6| < 10
|x − 6| < 5
x - 6 < 5 or - x + 6 < 5
1 < x < 11

SUFFICIENT.

(2) \(x^2−10x ≥ − 21\)
\(x^2−10x + 21 ≥ − 21 + 21\)
(x - 3)(x - 7) ≥ 0
x ≥ 3 or x ≥ 7
x ≥ 7

SUFFICIENT.

IMO Answer D.
_________________
Ephemeral Epiphany..!

GMATPREP1 590(Q48,V23) March 6, 2019
GMATPREP2 610(Q44,V29) June 10, 2019
GMATPREPSoft1 680(Q48,V35) June 26, 2019
Director
Director
avatar
P
Joined: 22 Feb 2018
Posts: 527
GMAT ToolKit User
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 07 Nov 2019, 01:19
Thank you vg18!

I missed the concept while solving the problem that product of two numbers will be >= to 0 only when two numbers have the same sign.

Posted from my mobile device
Director
Director
User avatar
D
Joined: 07 Mar 2019
Posts: 706
Location: India
GMAT 1: 580 Q43 V27
WE: Sales (Energy and Utilities)
CAT Tests
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 07 Nov 2019, 01:29
vg18 wrote:
Raxit85 wrote:
Can anyone please explain regarding x <=3 rather than x >=3??

Posted from my mobile device


I also got this wrong for the same reason. Looking back makes sense:

(x—3)(x—7) >=0

LHS will be positive only when (x-3) and (x-7) have same signs. So when we take x>=3 but less than 7 i.e let’s say x = 4 then LHS is (4-3)*(4-7)= -3 which isn’t correct. Hence the only set of nos which satisfy the above equation is either x>=7 or x<=3.


I should have rechecked it..!!
Fell for the 'Timer' which always takes the worst out of me.
_________________
Ephemeral Epiphany..!

GMATPREP1 590(Q48,V23) March 6, 2019
GMATPREP2 610(Q44,V29) June 10, 2019
GMATPREPSoft1 680(Q48,V35) June 26, 2019
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 61385
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 14 Nov 2019, 07:42
Intern
Intern
avatar
B
Joined: 05 Nov 2015
Posts: 14
GMAT ToolKit User
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21  [#permalink]

Show Tags

New post 03 Jan 2020, 10:09
vg18 wrote:
Raxit85 wrote:
Can anyone please explain regarding x <=3 rather than x >=3??

Posted from my mobile device


I also got this wrong for the same reason. Looking back makes sense:

(x—3)(x—7) >=0

LHS will be positive only when (x-3) and (x-7) have same signs. So when we take x>=3 but less than 7 i.e let’s say x = 4 then LHS is (4-3)*(4-7)= -3 which isn’t correct. Hence the only set of nos which satisfy the above equation is either x>=7 or x<=3.



Thanks this once slipped out of my mind...clock gets the worst out of me
GMAT Club Bot
Re: Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21   [#permalink] 03 Jan 2020, 10:09
Display posts from previous: Sort by

Is x > 0? (1) |2x - 12| < 10 (2) x^2 - 10x >= -21

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne