GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 17 Feb 2020, 02:29

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Manager
Joined: 19 Oct 2011
Posts: 95
Location: India
Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

22 Feb 2012, 18:59
58
97
00:00

Difficulty:

95% (hard)

Question Stats:

44% (02:05) correct 56% (02:06) wrong based on 1521 sessions

### HideShow timer Statistics

Is x > 0?

(1) |x + 3| = 4x – 3
(2) |x – 3| = |2x – 3|
Math Expert
Joined: 02 Sep 2009
Posts: 61211
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

22 Feb 2012, 21:02
64
1
50
Is x > 0?

(1) $$|x+3|=4x-3$$ --> LHS is an absolute value, which is always non-negative ($$|some \ expression|\geq{0}$$), so RHS must also be non-negative --> $$4x-3\geq{0}$$ --> $$x\geq{\frac{3}{4}}$$, hence $$x>0$$. Sufficient. You can see here that you don't even need to find exact value(s) of x to answer the question.

(2) $$|x-3|=|2x-3|$$. Square both sides: $$(x-3)^2=(2x-3)^2$$ --> $$(2x-3)^2-(x-3)^2=0$$. Apply $$a^2-b^2=(a-b)(a+b)$$, rather than squaring: --> $$x(3x-6)=0$$ --> $$x=0$$ or $$x=2$$. Not sufficient.

Hope it helps.
_________________
Intern
Joined: 29 Aug 2011
Posts: 16
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

25 Feb 2012, 09:45
5
7
Bunnel,
For statement one, I understand that you have not solved for x in your solution. I am still learning the abs value and in equalities. Can you share your thoughts on the following solution (solving for x in both statements)

a. |x+3| = 4x -3
|x+3| = x + 3 for x + 3 >= 0 ---> x > -3.
Solving for x,
x + 3 = 4x -3 ---> 6 = 3x ---> x = 2 ( solution accepted since x > -3)

| x + 3| = -(x +3 ) for x + 3 < 0 --> x < -3.
Solving for x,
-x - 3 = 4x -3
5x = 0 ---> x = 0 ( solution discarded as x is not < -3)

A is sufficient.

b. |x -3| = |2x -3|
|x -3| = x -3 for x-3 >= 0 ---> x >= 3
|x -3| = -(x -3) for x-3 < 0 ---> x < 3

|2x -3 | = 2x -3 for 2x -3 >= 0 ----> x >=3/2
|2x -3 | = -(2x -3) for 2x -3 < 0 ----> x < 3/2

So we have 3 ranges

1) x >=3 ==> x - 3 = 2x -3 ====> x = 0 ; discard
2) 3/2 < x < 3 ===> -(x-3) = 2x -3 ====> -x + 3 = 2x -3 ===> x =2 ( accepted solution )
3) x < 3/2 ===> -(x-3) = -(2x -3) ====> x = 3 (discarded the solution)

Let me know if I have solved the question correctly. I know the process is lengthy.

One more question, if we consider the only acceptable solution in statement b i.e., x =2 (case 3/2 < x < 3), then both statements are sufficient independently and we get the answer as option (D).

Regards
##### General Discussion
Math Expert
Joined: 02 Sep 2009
Posts: 61211
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

25 Feb 2012, 09:52
3
saxenaashi wrote:
Bunnel,
For statement one, I understand that you have not solved for x in your solution. I am still learning the abs value and in equalities. Can you share your thoughts on the following solution (solving for x in both statements)

a. |x+3| = 4x -3
|x+3| = x + 3 for x + 3 >= 0 ---> x > -3.
Solving for x,
x + 3 = 4x -3 ---> 6 = 3x ---> x = 2 ( solution accepted since x > -3)

| x + 3| = -(x +3 ) for x + 3 < 0 --> x < -3.
Solving for x,
-x - 3 = 4x -3
5x = 0 ---> x = 0 ( solution discarded as x is not < -3)

A is sufficient.

b. |x -3| = |2x -3|
|x -3| = x -3 for x-3 >= 0 ---> x >= 3
|x -3| = -(x -3) for x-3 < 0 ---> x < 3

|2x -3 | = 2x -3 for 2x -3 >= 0 ----> x >=3/2
|2x -3 | = -(2x -3) for 2x -3 < 0 ----> x < 3/2

So we have 3 ranges

1) x >=3 ==> x - 3 = 2x -3 ====> x = 0 ; discard
2) 3/2 < x < 3 ===> -(x-3) = 2x -3 ====> -x + 3 = 2x -3 ===> x =2 ( accepted solution )
3) x < 3/2 ===> -(x-3) = -(2x -3) ====> x = 3 (discarded the solution)

Let me know if I have solved the question correctly. I know the process is lengthy.

One more question, if we consider the only acceptable solution in statement b i.e., x =2 (case 3/2 < x < 3), then both statements are sufficient independently and we get the answer as option (D).

Regards

It seems that you understand this method very well.

Everything is correct except the red parts: -(x-3) = -(2x -3) --> x=0 (not x=3), so it's also a valid solution. Hence for (2) you have two valid solutions x=2 and x=0 (just like in my post above), which makes this statement not sufficient.

Hope it's clear.
_________________
Manager
Joined: 30 Jun 2011
Posts: 174
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

17 Apr 2012, 05:19
3
dvinoth86 wrote:
Is x > 0?

(1) |x + 3| = 4x – 3
(2) |x – 3| = |2x – 3|

Liked the question? encourage by giving kudos

Remember: When you have || on both sides of eqn you do not need to VERIFY the answer by putting them back in eqn BUT when you have || on only one side you MUST VERIFY the answer by putting them back in eqn

(1) |x + 3| = 4x – 3
a) x + 3 = 4x – 3 => x=2 .. VALID
b) -(x + 3) = 4x – 3 => x=0 .. INVALID

Hence Sufficient

(2) |x – 3| = |2x – 3| => x = 0 or 6 .. INVALID
Hence In-Sufficient
Math Expert
Joined: 02 Sep 2009
Posts: 61211
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

04 Jun 2013, 07:00
2
WholeLottaLove wrote:
Hi!

Why do we not find the positive and negative values for |x+3|=4x-3? Is it because this isn't a <, >, >= problem?

Thanks!

Bunuel wrote:
Is x > 0?

(1) $$|x+3|=4x-3$$ --> LHS is an absolute value, which is always non-negative ($$|some \ expression|\geq{0}$$), so RHS must also be non-negative --> $$4x-3\geq{0}$$ --> $$x\geq{\frac{3}{4}}$$, hence $$x>0$$. Sufficient. You can see here that you don't even need to find exact value(s) of x to answer the question.

(2) $$|x-3|=|2x-3|$$. Square both sides: $$(x-3)^2=(2x-3)^2$$ --> $$(2x-3)^2-(x-3)^2=0$$. Apply $$a^2-b^2=(a-b)(a+b)$$, rather than squaring: --> $$x(3x-6)=0$$ --> $$x=0$$ or $$x=2$$. Not sufficient.

Hope it helps.

One can do this way too, but the way shown in my post is faster.
_________________
e-GMAT Representative
Joined: 04 Jan 2015
Posts: 3239
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

12 May 2015, 22:57
2
vikram4689 wrote:
dvinoth86 wrote:
Is x > 0?

(1) |x + 3| = 4x – 3
(2) |x – 3| = |2x – 3|

Liked the question? encourage by giving kudos

Remember: When you have || on both sides of eqn you do not need to VERIFY the answer by putting them back in eqn BUT when you have || on only one side you MUST VERIFY the answer by putting them back in eqn

(1) |x + 3| = 4x – 3
a) x + 3 = 4x – 3 => x=2 .. VALID
b) -(x + 3) = 4x – 3 => x=0 .. INVALID

Hence Sufficient

(2) |x – 3| = |2x – 3| => x = 0 or 6 .. INVALID
Hence In-Sufficient

Your statement 1 has two sceneries. Then how does it become sufficient?

The solution quoted by you above has some tacit steps. I'll list them here:

St. 1 says: |x + 3| = 4x – 3 . . . (1)

Case 1: x + 3 > = 0

That is, x > = -3

In this case, |x+3| = (x+3)

So, Equation 1 becomes:

x + 3 = 4x - 3
=> 6 = 3x
=> x = 2

Does this value of x satisfy the condition of Case 1, that x > = -3?

Yes, it does. So, x = 2 is a valid value of x.

Let's now consider

Case 2: x + 3 < 0

That is, x < -3

In this case, |x+3| = -(x+3)

So, Equation 1 becomes:

-(x + 3) = 4x - 3
=> -x - 3 = 4x - 3
=> 0 = 5x
=> x = 0

Does this value of x satisfy the condition of Case 2, that x < -3?

No, it doesn't. So, x = 0 is an INVALID value of x.

Thus, we got only 1 valid value of X from Statement 1 (x = 2) and so, Statement 1 is sufficient to say that x > 0.

Japinder
_________________
Manhattan Prep Instructor
Joined: 04 Dec 2015
Posts: 890
GMAT 1: 790 Q51 V49
GRE 1: Q170 V170
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

29 Dec 2019, 10:56
2
Quote:
Hi

I am not clear why are we taking ONLY x+3 as x+3>=0 and not x+3<=0?

Whenever you translate an absolute value to 'go both ways' like in that explanation, you need to take an additional step and double check to make sure you haven't come up with an invalid solution. You're correct that you need to consider both x + 3 > 0 and x + 3 < 0. But once you've figured out what that implies about the value of x, double check by plugging x back in. For instance, if x + 3 < 0, we ended up figuring out that x has to equal 0. But that's impossible, because 0 + 3 isn't less than 0. So, we didn't get a valid solution at all, and only the x + 3 > 0 solution worked.
_________________

Chelsey Cooley | Manhattan Prep | Seattle and Online

My latest GMAT blog posts | Suggestions for blog articles are always welcome!
Math Expert
Joined: 02 Sep 2009
Posts: 61211
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

25 Feb 2012, 10:15
1
7
saxenaashi wrote:
Works. Thanks for pointing out the mistake and quick response too. I am just learning this so working ground up, hence I am not hesitant in taking long route initially. After next few questions, I would be tuned to extract the ranges I guess. Is there a condition on squaring the sides of the equation or inequation.

Regards

A. We can raise both parts of an inequality to an even power if we know that both parts of an inequality are non-negative (the same for taking an even root of both sides of an inequality).
For example:
$$2<4$$ --> we can square both sides and write: $$2^2<4^2$$;
$$0\leq{x}<{y}$$ --> we can square both sides and write: $$x^2<y^2$$;

But if either of side is negative then raising to even power doesn't always work.
For example: $$1>-2$$ if we square we'll get $$1>4$$ which is not right. So if given that $$x>y$$ then we can not square both sides and write $$x^2>y^2$$ if we are not certain that both $$x$$ and $$y$$ are non-negative.

B. We can always raise both parts of an inequality to an odd power (the same for taking an odd root of both sides of an inequality).
For example:
$$-2<-1$$ --> we can raise both sides to third power and write: $$-2^3=-8<-1=-1^3$$ or $$-5<1$$ --> $$-5^2=-125<1=1^3$$;
$$x<y$$ --> we can raise both sides to third power and write: $$x^3<y^3$$.

So in statement (2) since both parts of expression are non-negative we can safely apply squaring.

Hope it helps.
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 61211
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

27 Feb 2012, 22:30
1
terance wrote:
Well, I have a little bit another solution for this problem

Consider (1): if x>-3 then x+3=4x-3, so x=2, sufficient
if x<-3, then -x-3=4x-3, which Leeds to answer x=0, which is wrong because we consider only x<-3
Sum up (1) is sufficient

The saim logic can be applied to the (2), and it is possible to derive that (2) is sufficient

So the answer is D either (1) is sufficient or (2) is sufficient

In your logic, you gave a mistake, because you've missed the root.

Posted from GMAT ToolKit

Welcome to GMAT Club.

Unfortunately your answer is not correct: OA for this question is A, not D (you can see it under the spoiler in the initial post).

(2) |x – 3| = |2x – 3| has two roots x=0 and x=2 (just substitute these values to see that they both satisfy the given equation), so you can not get the single numerical value of x, which makes this statement insufficient.

You can refer to above solutions for two different approaches of how to get these roots for (2). Please ask if anything remains unclear.
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 61211
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

10 May 2013, 01:01
1
nikhil007 wrote:
Hi Bunuel
This is how I solved the 2 statements,
http://campl.us/fWdgqiT5EsK

and I get 0 & 2 for both statements, can u tell me what wrong am I doing?

Posted from my mobile device

If you substitute x=0 in |x + 3| = 4x – 3 you'll get: LHS=|x + 3|=3 and RHS=4x – 3=-3, thus $$LHS\neq{RHS}$$, which means that x=0 is not the root of the given equation.

When expanding |x+3|:

When x<-3, then |x+3|=-(x+3), so in this case we'll have -(x+3)=4x-3 --> x=0 --> discard this value since 0 is not less than -3 (we consider the range when x<-3).

When x>=-3, then |x+3|=x+3, so in this case we'll have x+3=4x-3 --> x=2 --> this value of x is OK since 2>-3.

So, |x + 3| = 4x - 3 has only one root, x=2.

Hope it's clear.
_________________
Math Expert
Joined: 02 Sep 2009
Posts: 61211
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

04 Jun 2013, 08:13
1
WholeLottaLove wrote:
Bunuel wrote:
$$|x+3|=4x-3$$. Check point is at $$x=-3$$ (check point, is the value of x for which the value of an expression in modulus equals to zero).

When $$x\leq{-3}$$, then $$x+3<0$$, thus $$|x+3|=-(x+3)$$. So, in this case we have $$-(x+3)=4x-3$$ --> $$x=0$$ --> discard this solution since we consider the range when $$x\leq{-3}$$.

When $$x>{-3}$$, then $$x+3>0$$, thus $$|x+3|=x+3$$. So, in this case we have $$x+3=4x-3$$ --> $$x=2$$ --> since $$x=2>-3$$, then this solution is valid.

So, we have that $$|x+3|=4x-3$$ has only one root: $$x=2$$.

Hope it's clear.

Why do we discard that solution?

We consider the range $$x\leq{-3}$$. x=0 is out of this range.

Check absolute values chapter of math book: math-absolute-value-modulus-86462.html

Hope it helps.
_________________
Director
Joined: 04 Aug 2010
Posts: 532
Schools: Dartmouth College
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

03 Aug 2018, 22:07
1
Mo2men wrote:
Thanks GMATGuruNY.

In this type of questions asking for sign of x, does this mean that I can deal with such statement in same manner like statement 1? or do I need open modulus to be sure from the sign?

Since the question stem asks whether x>0 -- and an equation with absolute value on both sides can have both a positive and a nonpositive solution -- I recommend that you solve the equation, either by opening up the modulus or by squaring both sides.
_________________
GMAT and GRE Tutor
New York, NY

Available for tutoring in NYC and long-distance.
Math Expert
Joined: 02 Sep 2009
Posts: 61211
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

28 Nov 2018, 05:38
1
topper97 wrote:
Bunuel does it mean that in all questions based on absolute values, one solution of it would be 0?

I'm clear with Stat1 but in stat 2, I used the formula by squaring both sides of absolute figures to find the inequality range. Here is what I did.

|x−3|=|2x−3|
Square both sides: (x−3)^2=(2x−3)^2
x^2-6x+9=4x^2-12x+9
3x^2=6x
Therefore, x=2. So I chose option D. Can you help me to find what is the error? I'm not getting it. All I did was use the formula.

1. Of course 0 is NOT a solution of all absolute value questions. Why would it be?

2. You solved 3x^2 = 6x incorrectly. You cannot reduce 3x^2 = 6x by x because x can be 0 and we cannot divide by 0. By doing so you loose a root, namely x = 0.

Never reduce equation by variable (or expression with variable), if you are not certain that variable (or expression with variable) doesn't equal to zero. We cannot divide by zero.
_________________
Intern
Joined: 29 Aug 2011
Posts: 16
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

25 Feb 2012, 10:07
Bunuel wrote:
saxenaashi wrote:
Bunnel,
For statement one, I understand that you have not solved for x in your solution. I am still learning the abs value and in equalities. Can you share your thoughts on the following solution (solving for x in both statements)

a. |x+3| = 4x -3
|x+3| = x + 3 for x + 3 >= 0 ---> x > -3.
Solving for x,
x + 3 = 4x -3 ---> 6 = 3x ---> x = 2 ( solution accepted since x > -3)

| x + 3| = -(x +3 ) for x + 3 < 0 --> x < -3.
Solving for x,
-x - 3 = 4x -3
5x = 0 ---> x = 0 ( solution discarded as x is not < -3)

A is sufficient.

b. |x -3| = |2x -3|
|x -3| = x -3 for x-3 >= 0 ---> x >= 3
|x -3| = -(x -3) for x-3 < 0 ---> x < 3

|2x -3 | = 2x -3 for 2x -3 >= 0 ----> x >=3/2
|2x -3 | = -(2x -3) for 2x -3 < 0 ----> x < 3/2

So we have 3 ranges

1) x >=3 ==> x - 3 = 2x -3 ====> x = 0 ; discard
2) 3/2 < x < 3 ===> -(x-3) = 2x -3 ====> -x + 3 = 2x -3 ===> x =2 ( accepted solution )
3) x < 3/2 ===> -(x-3) = -(2x -3) ====> x = 3 (discarded the solution)

Let me know if I have solved the question correctly. I know the process is lengthy.

One more question, if we consider the only acceptable solution in statement b i.e., x =2 (case 3/2 < x < 3), then both statements are sufficient independently and we get the answer as option (D).

Regards

It seems that you understand this method very well.

Everything is correct except the red parts: -(x-3) = -(2x -3) --> x=0 (not x=3), so it's also a valid solution. Hence for (2) you have two valid solutions x=2 and x=0 (just like in my post above), which makes this statement not sufficient.

Hope it's clear.

Works. Thanks for pointing out the mistake and quick response too. I am just learning this so working ground up, hence I am not hesitant in taking long route initially. After next few questions, I would be tuned to extract the ranges I guess. Is there a condition on squaring the sides of the equation or inequation.

Regards
Intern
Joined: 26 Jan 2012
Posts: 1
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

27 Feb 2012, 22:09
Well, I have a little bit another solution for this problem

Consider (1): if x>-3 then x+3=4x-3, so x=2, sufficient
if x<-3, then -x-3=4x-3, which Leeds to answer x=0, which is wrong because we consider only x<-3
Sum up (1) is sufficient

The saim logic can be applied to the (2), and it is possible to derive that (2) is sufficient

So the answer is D either (1) is sufficient or (2) is sufficient

In your logic, you gave a mistake, because you've missed the root.

Posted from GMAT ToolKit
Manager
Joined: 04 Dec 2011
Posts: 55
Schools: Smith '16 (I)
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

09 May 2013, 12:38
Hi Bunuel
This is how I solved the 2 statements,
http://campl.us/fWdgqiT5EsK

and I get 0 & 2 for both statements, can u tell me what wrong am I doing?

Posted from my mobile device
Senior Manager
Joined: 13 May 2013
Posts: 396
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

04 Jun 2013, 06:56
Hi!

Why do we not find the positive and negative values for |x+3|=4x-3? Is it because this isn't a <, >, >= problem?

Thanks!

Bunuel wrote:
Is x > 0?

(1) $$|x+3|=4x-3$$ --> LHS is an absolute value, which is always non-negative ($$|some \ expression|\geq{0}$$), so RHS must also be non-negative --> $$4x-3\geq{0}$$ --> $$x\geq{\frac{3}{4}}$$, hence $$x>0$$. Sufficient. You can see here that you don't even need to find exact value(s) of x to answer the question.

(2) $$|x-3|=|2x-3|$$. Square both sides: $$(x-3)^2=(2x-3)^2$$ --> $$(2x-3)^2-(x-3)^2=0$$. Apply $$a^2-b^2=(a-b)(a+b)$$, rather than squaring: --> $$x(3x-6)=0$$ --> $$x=0$$ or $$x=2$$. Not sufficient.

Hope it helps.
Senior Manager
Joined: 13 May 2013
Posts: 396
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

04 Jun 2013, 07:26
Hmmm...

When I solve for the pos. and neg. values of |x+3|=4x-3 I get:

I. x+3=4x-3 ==> -3x=-6 ==> x=2
II. x+3=-(4x-3) ==> x+3=-4x+3 ==> 5x=0 ==> x=0

So here in my presumably incorrect simplification, I have x=2 and x=0 in which case we can't be sure if x>0

For many abs. value questions it seems that you have to find the positive and negative cases each equation. I get that in this case, |x+3|=4x-3 means that 4x-3 is positive but why for other, similar questions, is solving for the positive and negative cases necessary?

Bunuel wrote:
WholeLottaLove wrote:
Hi!

Why do we not find the positive and negative values for |x+3|=4x-3? Is it because this isn't a <, >, >= problem?

Thanks!

Bunuel wrote:
Is x > 0?

(1) $$|x+3|=4x-3$$ --> LHS is an absolute value, which is always non-negative ($$|some \ expression|\geq{0}$$), so RHS must also be non-negative --> $$4x-3\geq{0}$$ --> $$x\geq{\frac{3}{4}}$$, hence $$x>0$$. Sufficient. You can see here that you don't even need to find exact value(s) of x to answer the question.

(2) $$|x-3|=|2x-3|$$. Square both sides: $$(x-3)^2=(2x-3)^2$$ --> $$(2x-3)^2-(x-3)^2=0$$. Apply $$a^2-b^2=(a-b)(a+b)$$, rather than squaring: --> $$x(3x-6)=0$$ --> $$x=0$$ or $$x=2$$. Not sufficient.

Hope it helps.

One can do this way too, but the way shown in my post is faster.
Math Expert
Joined: 02 Sep 2009
Posts: 61211
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|  [#permalink]

### Show Tags

04 Jun 2013, 07:42
$$|x+3|=4x-3$$. Check point is at $$x=-3$$ (check point, is the value of x for which the value of an expression in modulus equals to zero).

When $$x\leq{-3}$$, then $$x+3<0$$, thus $$|x+3|=-(x+3)$$. So, in this case we have $$-(x+3)=4x-3$$ --> $$x=0$$ --> discard this solution since we consider the range when $$x\leq{-3}$$.

When $$x>{-3}$$, then $$x+3>0$$, thus $$|x+3|=x+3$$. So, in this case we have $$x+3=4x-3$$ --> $$x=2$$ --> since $$x=2>-3$$, then this solution is valid.

So, we have that $$|x+3|=4x-3$$ has only one root: $$x=2$$.

Hope it's clear.
_________________
Re: Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|   [#permalink] 04 Jun 2013, 07:42

Go to page    1   2   3    Next  [ 42 posts ]

Display posts from previous: Sort by

# Is x > 0? (1) |x + 3| = 4x – 3 (2) |x – 3| = |2x – 3|

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne