It is currently 28 Jun 2017, 18:01

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Is y^3 ≤ |y|?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

1 KUDOS received
Manager
Manager
avatar
Joined: 02 Sep 2012
Posts: 248
Location: United States
Concentration: Entrepreneurship, Finance
GMAT Date: 07-25-2013
GPA: 3.83
WE: Architecture (Computer Hardware)
Is y^3 ≤ |y|? [#permalink]

Show Tags

New post 16 Apr 2013, 23:16
1
This post received
KUDOS
2
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  25% (medium)

Question Stats:

63% (01:53) correct 37% (00:43) wrong based on 265 sessions

HideShow timer Statistics

Is y^3 ≤ |y|?

(1) y < 1
(2) y < 0
[Reveal] Spoiler: OA

_________________

"Giving kudos" is a decent way to say "Thanks" and motivate contributors. Please use them, it won't cost you anything

2 KUDOS received
VP
VP
User avatar
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1122
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
GMAT ToolKit User
Re: Is y^3 ≤ |y| [#permalink]

Show Tags

New post 16 Apr 2013, 23:32
2
This post received
KUDOS
4
This post was
BOOKMARKED
\(|y|\geq{y^3}\)

Case y>0
\(y\geq{y^3}=y-y^3\geq{0}=y(1-y^2)\geq{0}\) this is +ve if \(y\geq{0}\) and \(1-y^2\geq{0}\) (\(-1\leq{x}\leq{1}\)) so the only interval in which this is positive is \(1\geq{y}\geq{0}\) ( you have to intersect \(y\geq{0}\) with \(-1\leq{x}\leq{1}\) AND with the rage we are considering y>0 and take the common part)

Case y<0
\(-y\geq{y^3}=-y-y^3\geq{0}=-y(1+y^2)\geq{0}\) this is +ve if \(-y\geq{0}=y\leq{0}\) and \(1+y^2\geq{0}=y^2\geq{-1}=\) always true => always positive. Intersect those ranges and find out that if y<0 the function is always +ve.

Take case 1 and 2: interval \(1\geq{y}\geq{0}+y\leq{0} = y\leq{1}\)

The question now:is \(y\leq{1}\)?
(1) y < 1 Sufficient
(2) y < 0 Sufficient

Let me know if it's clear
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]

Expert Post
1 KUDOS received
Math Expert
User avatar
D
Joined: 02 Sep 2009
Posts: 39753
Re: Is y^3 ≤ |y [#permalink]

Show Tags

New post 17 Apr 2013, 00:01
1
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
Is y^3 ≤ |y|?

You can use simple reasoning instead of algebra. Let's see for which range(s) y^3 ≤ |y| holds true.
When y ≤ 0, then LHS = y^3 ≤ 0 and RHS = |y| >= 0, thus in this case y^3 ≤ |y|.
When 0 < y ≤ 1, then also y^3 ≤ |y|.
When y>1, then obviously y^3 > |y|.

So, we have that y^3 ≤ |y| holds true when y ≤ 1.

(1) y < 1. Sufficient.
(2) y <0. Sufficient.

Answer: D.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior Manager
Senior Manager
User avatar
Joined: 13 May 2013
Posts: 469
Re: Is y^3 ≤ |y|? [#permalink]

Show Tags

New post 25 Jun 2013, 17:33
Is y^3 ≤ |y|?

(1) y < 1
(2) y < 0

Is y^3 ≤ |y|?

If y≥0 then:
y^3 ≤ |y|
y^3 ≤ y
y^3 - y ≤ 0

If y≤0 then:
y^3 ≤ |y|
y^3 ≤ -y
y^3 + y ≤ 0

1.) y < 1

For either case, positive or negative it holds true. For example:

for the positive case y<1.
If y=1/2 then 1/2^3 - 1/2 ≤ 0.
we only take cases between 0 and 1

for the negative case y<1
if y = -1/2 then -1/2^3 + -1/2 ≤ 0
we only take cases less than zero

2.) y < 0

We don't consider the positive case because we are only considering the negative case of y.

for the negative case y<0
if y = -1/2 then -1/2^3 + -1/2 ≤ 0
we only take cases less than zero
(Same as above)

Is this a correct way to solve the problem? It seems like others solved it in a different fashion.
1 KUDOS received
VP
VP
User avatar
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1122
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
GMAT ToolKit User
Re: Is y^3 ≤ |y|? [#permalink]

Show Tags

New post 25 Jun 2013, 22:49
1
This post received
KUDOS
WholeLottaLove wrote:
Is y^3 ≤ |y|?

(1) y < 1
(2) y < 0

Is y^3 ≤ |y|?

If y≥0 then:
y^3 ≤ |y|
y^3 ≤ y
y^3 - y ≤ 0

If y≤0 then:
y^3 ≤ |y|
y^3 ≤ -y
y^3 + y ≤ 0

1.) y < 1

For either case, positive or negative it holds true. For example:

for the positive case y<1.
If y=1/2 then 1/2^3 - 1/2 ≤ 0.
we only take cases between 0 and 1

for the negative case y<1
if y = -1/2 then -1/2^3 + -1/2 ≤ 0
we only take cases less than zero

2.) y < 0

We don't consider the positive case because we are only considering the negative case of y.

for the negative case y<0
if y = -1/2 then -1/2^3 + -1/2 ≤ 0
we only take cases less than zero
(Same as above)

Is this a correct way to solve the problem? It seems like others solved it in a different fashion.


Yes,it's correct. You can solve it correctly in many ways
_________________

It is beyond a doubt that all our knowledge that begins with experience.

Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]

Intern
Intern
avatar
Joined: 16 Oct 2012
Posts: 5
Re: Is y^3 ≤ |y|? [#permalink]

Show Tags

New post 26 Sep 2014, 13:56
stmt 1 :
y<1

test numbers:

y=1/2 , 1/8<1/2 - yes
y=0 0=0 , yes
y= any negative value

-ve <= +ve , always yes

sufficient.

stmt 2:
y<0

for any negative value, y3 will always be negative
-ve <= +ve ( always yes)

sufficient
Ans D

please give kudos if you like the solution
Manager
Manager
avatar
B
Joined: 14 Jan 2006
Posts: 99
Schools: HKUST
Re: Is y^3 ≤ |y|? [#permalink]

Show Tags

New post 15 Jun 2017, 15:38
If we square it on both the sides then how do we get y<=1 ?

y^6 <= y^2
y^2 (y^4-1) <=0
As per + - + - method, since y^2, we do not consider it.
Y^4 - 1 gives us +1 and -1.

-1 +1
+ - +

So -1<= y <= 1. How did we get y<=1 ??
VP
VP
avatar
G
Joined: 26 Mar 2013
Posts: 1014
Reviews Badge CAT Tests
Is y^3 ≤ |y|? [#permalink]

Show Tags

New post 15 Jun 2017, 17:56
Is y^3 ≤ |y|?

(1) y < 1

Test Values with integers and fraction with positive and negative sign.

Let y = 1/2........Answer to question is yes

Let y = 0........Answer to question is yes

Let y = -1/2........Answer to question is yes

Let y =-2........Answer to question is yes

Sufficient

(2) y < 0

Use the same third and fourth examples above....Answer is Yes

Sufficient

Answer: D
Manager
Manager
avatar
B
Joined: 14 Jan 2006
Posts: 99
Schools: HKUST
Re: Is y^3 ≤ |y|? [#permalink]

Show Tags

New post 15 Jun 2017, 18:07
Actually I wanted to know if the range is correct or not...Have i made any error in the algebriac expression ???
Intern
Intern
avatar
Joined: 03 May 2017
Posts: 6
Schools: CBS '14 (M)
Re: Is y^3 ≤ |y|? [#permalink]

Show Tags

New post 16 Jun 2017, 01:55
nikhilpoddar wrote:
If we square it on both the sides then how do we get y<=1 ?

y^6 <= y^2
y^2 (y^4-1) <=0
As per + - + - method, since y^2, we do not consider it.
Y^4 - 1 gives us +1 and -1.

-1 +1
+ - +

So -1<= y <= 1. How did we get y<=1 ??


Nikhil - squaring both sides is not a good approach here, because there is no guarantee that both sides are positive. If y is negative, the squaring could flip the inequality.

Example take y=-2

(-2)^3 <= |-2| --> correct?

squaring both sides (without flipping inequality) gives
(-2)^6 <= (-2)^2 ==> This is obviously wrong!

I hope this helps and you see the point.
_________________

Abhijit @ Prepitt
GMAT Math Tutor
MBA, Columbia Business School (Graduated 2014)

GMAT Math Workshops ($90/session) | GMAT Math Private Tutoring ($70/hr)

Senior Manager
Senior Manager
User avatar
G
Joined: 04 Dec 2015
Posts: 424
Location: India
Concentration: Technology, Strategy
Schools: ISB '19, IIMA , IIMB, XLRI
WE: Information Technology (Consulting)
Re: Is y^3 ≤ |y|? (1) y < 1 (2) y < 0 [#permalink]

Show Tags

New post 25 Jun 2017, 08:27
hazelnut wrote:
Is y^3 ≤ |y| ?

(1) y < 1
(2) y < 0


y is negative integer or negative fraction from both statement (1) and (2).

\(|y|\) will give only the positive value of y.

\(y ^3\) Cube of any negative integer or negative fraction will be negative and less than the positive value of y.

I is Sufficient. II is Sufficient. Answer (D)...
1 KUDOS received
Senior Manager
Senior Manager
User avatar
S
Joined: 19 Mar 2014
Posts: 291
Location: United States
Concentration: Finance, Entrepreneurship
GMAT ToolKit User CAT Tests
Is y^3 < |y| ? [#permalink]

Show Tags

New post 25 Jun 2017, 08:49
1
This post received
KUDOS
\(y^3 ≤ |y|\)

(1) \(y < 1\)

Consider \(y = \frac{1}{2}\)

\({\frac{1}{2}}^3 ≤ {|\frac{1}{2}|}\)

\({\frac{1}{8}} ≤ {\frac{1}{2}}\) ==> TRUE

Lets check for ZERO as well

\({0}^3 ≤ |0| = 0 = 0\) ==> TRUE

Now, lets check for Negative values as well, as we know that mod/absolute function will always give us positive values and cube of negative will always give us negative values, our L.H.S. Should always be < R.H.S. Lets test

\({\frac{-1}{2}}^3 ≤ {|\frac{-1}{2}|}\)

\({\frac{-1}{8}} ≤ {\frac{1}{2}}\) ==> TRUE

Hence, Eq. (1) is SUFFICIENT

2) \(y < 0\)

As y is negative, we know for Negative values as well, as we know that mod/absolute function will always give us positive values and cube of negative will always give us negative values, our L.H.S. Should always be < R.H.S. Lets test

\({\frac{-1}{2}}^3 ≤ {|\frac{-1}{2}|}\)

\({\frac{-1}{8}} ≤ {\frac{1}{2}}\) ==> TRUE

Hence, Eq. (2) is SUFFICIENT

As both (1) and (2) are SUFFICIENT

Answer is D

Did you like it? 1 Kudos Please :-D
_________________

Kudos - I hope you liked the post, if you have liked the post, please do not hesitate to show your appreciation and support with a simple click on Kudos, it will make me happy and encourage me to support more people.

"Nothing in this world can take the place of persistence. Talent will not: nothing is more common than unsuccessful men with talent. Genius will not; unrewarded genius is almost a proverb. Education will not: the world is full of educated derelicts. Persistence and determination alone are omnipotent."

Is y^3 < |y| ?   [#permalink] 25 Jun 2017, 08:49
    Similar topics Author Replies Last post
Similar
Topics:
1 Experts publish their posts in the topic Is y^3 < |y|? ydmuley 9 28 Jun 2017, 12:34
2 Experts publish their posts in the topic x^3+y^3=? MathRevolution 6 30 Apr 2016, 02:46
4 Experts publish their posts in the topic Is y = 3? Bunuel 6 05 Apr 2017, 20:34
3 Experts publish their posts in the topic Is (x + y)^3 an even integer? Bunuel 6 21 Nov 2016, 11:34
8 Experts publish their posts in the topic Is |x – 3| > |y – 3|? banksy 11 24 May 2016, 11:00
Display posts from previous: Sort by

Is y^3 ≤ |y|?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


cron

GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group and phpBB SEO

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.