Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Last year, the five employees of company X took an average [#permalink]

Show Tags

22 Jan 2010, 12:41

1

This post received KUDOS

12

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

55% (hard)

Question Stats:

57% (01:59) correct
43% (00:56) wrong based on 520 sessions

HideShow timer Statistics

Last year, the five employees of company X took an average of 16 vacation days each. What was the average number of vacation days taken by the same employees this year?

(1) Three employees had a 50% increase in thier number of vacation days and two employees has a 50% decrease (2) Three employees had 10 more vacation days each , and two employees has 5 fewer vacation days each.

5 employees 16 average vacation days Find: average this year

The easy one first:

2) Average = (e1 + e2 + e3 + e4 + e5) / 5 = (e1 + e2 + e3 + e4 + e5 + 10 + 10 + 10 -5 -5) / 5 = (e1 + e2 + e3 + e4 + e5 + 20) / 5 From the knowns, we know (e1 +... e5) / 5 = 16, so e1+...e5 = 80 Thus, new average = 80 + 20 / 5 = 20 So 2 alone is sufficient.

The hard one: 1) Average = (e1 + e2 + e3 + e4 + e5) / 5 Because the option gives you a percent increase, you can only find an answer IF e1 through e5 are all the same value (I.e. 16). However, as you are not given this information, 1 alone is not sufficient. For example, take (4 + 8 + 16 + 20 + 32) / 5 = 16. A 50% increase in e1, e2, and e3 (6+12+24) is different than a 50% increase in e3, e4, and e5 (24+30+48).
_________________

________________________________________________________________________ Andrew http://www.RenoRaters.com

Last year, the five employees of company X took an average of 16 vacation days each.what was the average number of vacation days taken by the same employees this year?

1) Three employees had a 50% increase in thier number of vacation days and two employees has a 50% decrease 2) Three employees had 10 more vacation days each , and two employees has 5 fewer vacation days each.

OA is B

(1) \(\frac{x+y}{5}=16\), where x is the # vacations days taken by the three employees mentioned and y is the the # of days taken by two employees mentioned. --> Question: \(\frac{1.5x+0.5y}{5}=?\), can not be determined. Not sufficient.

(2) \(\frac{x+y}{5}=16\) --> \(x+y=80\), where x is the # vacations days taken by the three employees mentioned and y is the the # of days taken by two employees mentioned. --> Question: \(\frac{(x+3*10)+(y-2*5)}{5}=?\) --> \(\frac{(x+y)+20}{5}=\frac{80+20}{5}=20\). Sufficient.

Answer: B.

One thing to mention here: stem says that vacation days were "taken" by employees and statements say that employees "had" (more, less) vacation days. What if they were given these vacation days but they didn't take them? But as the credited OA is B, then we should assume that all the vacation days that were given to the employees were used. Though kind of strange to "assume" something in GMAT.
_________________

1) Three employees had a 50% increase in thier number of vacation days and two employees has a 50% decrease 2) Three employees had 10 more vacation days each , and two employees has 5 fewer vacation days each.

given 5 employees 16 days average so 80 days leave last year

stmt 1 doesn't tell for which employess 50% increase and for which employess 50% decrease in vacation days

so not sufficient

stmt 2 if 3 employees had 10 more vacation days each then total vacation days is increased 80+3*10=>110

and if 2 employee vacation days decreased by 5 days each then total vacation days will come down to 110-2*5 =>100 days

so average vac. days for emp. this year will be 100/5 => 20 days

I evaluated statement 1 intuitively: the 50% increase could be referring to those with the most vacation days, so the average would increase likewise, it could refer to those with the least vacation days, in which case the average would decrease no way to tell, so 1 = insufficient

statement 2: 5x16 = 80 (total) take away 3x10 and add 2x5: 100 100/5 = 20 sufficient

Last year, the five employees of company X took an average of 16 vacation days each.what was the average number of vacation days taken by the same employees this year?

1) Three employees had a 50% increase in thier number of vacation days and two employees has a 50% decrease 2) Three employees had 10 more vacation days each , and two employees has 5 fewer vacation days each.

Clearly B...

We have Sum of all vacations taken by 5 employess = 16x5=80 S1. gives % increases of 3 employees and % decrease of 2 employees... This isn't sufficient. INSUFF... S2: This can gives us the average as we need to add 10 and subtract 5 from 80 and then divide by 5... SUFF
_________________

Cheers! JT........... If u like my post..... payback in Kudos!!

|Do not post questions with OA|Please underline your SC questions while posting|Try posting the explanation along with your answer choice| |For CR refer Powerscore CR Bible|For SC refer Manhattan SC Guide|

Last year, the five employees of company X took an average of 16 vacation days each.what was the average number of vacation days taken by the same employees this year?

1) Three employees had a 50% increase in thier number of vacation days and two employees has a 50% decrease 2) Three employees had 10 more vacation days each , and two employees has 5 fewer vacation days each.

OA is B

(1) \(\frac{x+y}{5}=16\), where x is the # vacations days taken by the three employees mentioned and y is the the # of days taken by two employees mentioned. --> Question: \(\frac{1.5x+0.5y}{5}=?\), can not be determined. Not sufficient.

(2) \(\frac{x+y}{5}=16\) --> \(x+y=80\), where x is the # vacations days taken by the three employees mentioned and y is the the # of days taken by two employees mentioned. --> Question: \(\frac{(x+3*10)+(y-2*5)}{5}=?\) --> \(\frac{(x+y)+20}{5}=\frac{80+20}{5}=20\). Sufficient.

Answer: B.

One thing to mention here: stem says that vacation days were "taken" by employees and statements say that employees "had" (more, less) vacation days. What if they were given these vacation days but they didn't take them? But as the credited OA is B, then we should assume that all the vacation days that were given to the employees were used. Though kind of strange to "assume" something in GMAT.

Hi . .Can you pls explain the variables x and y and how you arrived at the equations ?

Last year, the five employees of company X took an average of 16 vacation days each.what was the average number of vacation days taken by the same employees this year?

(1) Three employees had a 50% increase in thier number of vacation days and two employees has a 50% decrease (2) Three employees had 10 more vacation days each , and two employees has 5 fewer vacation days each.

OA is B

(1) \(\frac{x+y}{5}=16\), where x is the # vacations days taken by the three employees mentioned and y is the the # of days taken by two employees mentioned. --> Question: \(\frac{1.5x+0.5y}{5}=?\), can not be determined. Not sufficient.

(2) \(\frac{x+y}{5}=16\) --> \(x+y=80\), where x is the # vacations days taken by the three employees mentioned and y is the the # of days taken by two employees mentioned. --> Question: \(\frac{(x+3*10)+(y-2*5)}{5}=?\) --> \(\frac{(x+y)+20}{5}=\frac{80+20}{5}=20\). Sufficient.

Answer: B.

One thing to mention here: stem says that vacation days were "taken" by employees and statements say that employees "had" (more, less) vacation days. What if they were given these vacation days but they didn't take them? But as the credited OA is B, then we should assume that all the vacation days that were given to the employees were used. Though kind of strange to "assume" something in GMAT.

Hi . .Can you pls explain the variables x and y and how you arrived at the equations ?

(1) Three employees had a 50% increase in their number of vacation days and two employees has a 50% decrease.

Say x is the total # vacations days taken last year by the three employees mentioned and y is the total # of days taken last year by two employees mentioned.

Now, since we are told that "last year the five employees of company X took an average of 16 vacation days each", then (total # of vacation days)/(# of employees)=(x+y)/5=16.

Next, the first statement says that "the three employees had a 50% increase in their number of vacation days", so those three had 1.5x vacation days this year, and the other two had 0.5y vacation days this year. We need the new average for this year, so the value of (1.5x+0.5y)/5.

Re: Last year, the five employees of company X took an average [#permalink]

Show Tags

28 May 2014, 09:19

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: Last year, the five employees of company X took an average [#permalink]

Show Tags

08 Aug 2015, 12:07

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Last year, the five employees of company X took an average [#permalink]

Show Tags

22 Aug 2015, 12:28

bumpbot wrote:

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.

A non algebraic approach:

Total number of vacationing days => \(16 * 5 = 80 days\)

A) Insufficient: Let the employees be segregated as \(a--b--16--x--y\) (where x & y have taken more than 16 days of vacationing last year and a & b have taken less than 16 days of vacationing last year). Nowhere does it mention the three/two are < 16 days guy (ie a/b) or > 16 days guy (ie x/y). It only mentions that 3 employees had a 50% incre. and 2 employees 50% decrease.

B) Sufficient: Three guys have taken more than 10 days of last years' average, each (each is important here!). Therefore, these three have taken \(16*3 (avg.) + 10*3 (this years' incre.) =\) \(78 days\) of vacationing. Similarly, the remaining two have taken \(22 days\) of vacationing \([ie 2*(16-5)=11].\)

Avg. days of vacationing this year = \(\frac{78+22}{5}\)=\(20 days.\)

Last year, the five employees of company X took an average [#permalink]

Show Tags

08 Nov 2015, 17:25

Bunuel wrote:

GMAT10 wrote:

Last year, the five employees of company X took an average of 16 vacation days each.what was the average number of vacation days taken by the same employees this year?

1) Three employees had a 50% increase in thier number of vacation days and two employees has a 50% decrease 2) Three employees had 10 more vacation days each , and two employees has 5 fewer vacation days each.

OA is B

(1) \(\frac{x+y}{5}=16\), where x is the # vacations days taken by the three employees mentioned and y is the the # of days taken by two employees mentioned. --> Question: \(\frac{1.5x+0.5y}{5}=?\), can not be determined. Not sufficient.

(2) \(\frac{x+y}{5}=16\) --> \(x+y=80\), where x is the # vacations days taken by the three employees mentioned and y is the the # of days taken by two employees mentioned. --> Question: \(\frac{(x+3*10)+(y-2*5)}{5}=?\) --> \(\frac{(x+y)+20}{5}=\frac{80+20}{5}=20\). Sufficient.

Answer: B.

One thing to mention here: stem says that vacation days were "taken" by employees and statements say that employees "had" (more, less) vacation days. What if they were given these vacation days but they didn't take them? But as the credited OA is B, then we should assume that all the vacation days that were given to the employees were used. Though kind of strange to "assume" something in GMAT.

Hello Sir,

Option B never mentions that the information is for this year, this might as well be of the last year. In the case the we dont have any information for the this year and so B is not the answer. thoughts?

Re: Last year, the five employees of company X took an average [#permalink]

Show Tags

14 Jan 2016, 10:57

Bunuel wrote:

GMAT10 wrote:

Last year, the five employees of company X took an average of 16 vacation days each.what was the average number of vacation days taken by the same employees this year?

1) Three employees had a 50% increase in thier number of vacation days and two employees has a 50% decrease 2) Three employees had 10 more vacation days each , and two employees has 5 fewer vacation days each.

OA is B

(1) \(\frac{x+y}{5}=16\), where x is the # vacations days taken by the three employees mentioned and y is the the # of days taken by two employees mentioned. --> Question: \(\frac{1.5x+0.5y}{5}=?\), can not be determined. Not sufficient.

(2) \(\frac{x+y}{5}=16\) --> \(x+y=80\), where x is the # vacations days taken by the three employees mentioned and y is the the # of days taken by two employees mentioned. --> Question: \(\frac{(x+3*10)+(y-2*5)}{5}=?\) --> \(\frac{(x+y)+20}{5}=\frac{80+20}{5}=20\). Sufficient.

Answer: B.

One thing to mention here: stem says that vacation days were "taken" by employees and statements say that employees "had" (more, less) vacation days. What if they were given these vacation days but they didn't take them? But as the credited OA is B, then we should assume that all the vacation days that were given to the employees were used. Though kind of strange to "assume" something in GMAT.

Hi Bunuel, this very reasoning made me select option E. The GMAT uses such vague language sometimes it becomes really hard to try to understand what the question is truly asking. So, sometimes you get the right answer and sometimes you don't. What to do in such situations?

Last year, the five employees of company X took an average [#permalink]

Show Tags

15 Jul 2016, 02:55

GMAT10 wrote:

Last year, the five employees of company X took an average of 16 vacation days each. What was the average number of vacation days taken by the same employees this year?

(1) Three employees had a 50% increase in thier number of vacation days and two employees has a 50% decrease (2) Three employees had 10 more vacation days each , and two employees has 5 fewer vacation days each.

Since we are talking about averages; it is quite safe to assume :- There can be a great range in the elements of the set or There can be no difference in the elements of set.

Statement 1)Three employees had a 50% increase in thier number of vacation days and two employees has a 50% decrease Insufficient :- We don't know which employees increased or decreased their vacations percent. Case 1) The employees that took more holidays last year increased their holidays by 50% Case 2) The employee who took less holidays last year increased their holidays by 50 %

Cannot reach a definite value

(2) Three employees had 10 more vacation days each , and two employees has 5 fewer vacation days each. Sufficient Last year (a)+(b)+(c)+(d)+(e)=80

this year (a+10)+(b+10)+(c+10)+(d-5)+(e-5)?

==> a+b+c+d+e+30-10 ==> a+b+c+d+e+20 ==>80+20 ==> 100 average number of vacation per employee=100/5= 20 holidays per employee

B is the answer
_________________

Posting an answer without an explanation is "GOD COMPLEX". The world doesn't need any more gods. Please explain you answers properly. FINAL GOODBYE :- 17th SEPTEMBER 2016. .. 16 March 2017 - I am back but for all purposes please consider me semi-retired.

Re: Last year, the five employees of company X took an average [#permalink]

Show Tags

19 Apr 2017, 22:05

GMAT10 wrote:

Last year, the five employees of company X took an average of 16 vacation days each. What was the average number of vacation days taken by the same employees this year?

(1) Three employees had a 50% increase in thier number of vacation days and two employees has a 50% decrease (2) Three employees had 10 more vacation days each , and two employees has 5 fewer vacation days each.

Statement 1

In this statement we can use a smaller example- not a perfect example though possibly a practical one for understanding the problem/statement

A set of 5 employees has an average of 6 days

5 employees [4,6,4,6,10]

In this circumstance it actually matters which group of 3 employees has a 50% increase and 50% decrease- this makes the average number of days variable

[6,9,6] + [3,5] = 28/5 average days

whereas

[15, 12,8]+[2,3]= 40/5 average days

Insufficient

Statement 2

We can actually solve for the number of additional days by using the formula

There’s something in Pacific North West that you cannot find anywhere else. The atmosphere and scenic nature are next to none, with mountains on one side and ocean on...

This month I got selected by Stanford GSB to be included in “Best & Brightest, Class of 2017” by Poets & Quants. Besides feeling honored for being part of...

Joe Navarro is an ex FBI agent who was a founding member of the FBI’s Behavioural Analysis Program. He was a body language expert who he used his ability to successfully...