GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

It is currently 30 May 2020, 04:00

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Let ABC be a right-angled triangle with BC as the hypotenuse. Lengths

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 64243
Let ABC be a right-angled triangle with BC as the hypotenuse. Lengths  [#permalink]

Show Tags

New post 02 Apr 2020, 09:33
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

67% (03:09) correct 33% (03:32) wrong based on 24 sessions

HideShow timer Statistics

DS Forum Moderator
User avatar
V
Joined: 19 Oct 2018
Posts: 1851
Location: India
Premium Member
Re: Let ABC be a right-angled triangle with BC as the hypotenuse. Lengths  [#permalink]

Show Tags

New post 02 Apr 2020, 11:39
1
1
\(BC = \sqrt{AB^2 + AC^2}\)

\(BC = \sqrt{15^2 + 20^2} = 25\)

For minimum possible time, we have to cover the shortest distance from A to hypotenuse. {Shortest distance from a point to a line is the perpendicular distance)

1/2 *AB *AC = 1/2 *BC * AD

AD = \(\frac{15*20}{25}\) = 12 Km

Time taken = \(\frac{12}{30} *60\) = 24 mins


Bunuel wrote:
Let ABC be a right-angled triangle with BC as the hypotenuse. Lengths of AB and AC are 15 km and 20 km, respectively. The minimum possible time, in minutes, required to reach the hypotenuse from A at a speed of 30 km per hour is:

A. 20
B. 21
C. 22
D. 23
E. 24

Attachments

Untitled.png
Untitled.png [ 5.62 KiB | Viewed 279 times ]

GMAT Club Bot
Re: Let ABC be a right-angled triangle with BC as the hypotenuse. Lengths   [#permalink] 02 Apr 2020, 11:39

Let ABC be a right-angled triangle with BC as the hypotenuse. Lengths

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





cron

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne