Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

Re: M is the sum of the reciprocals of the consecutive integers [#permalink]

Show Tags

11 Dec 2012, 10:02

1

This post received KUDOS

3

This post was BOOKMARKED

Bunuel wrote:

M is the sum of the reciprocals of the consecutive integers from 201 to 300, inclusive. Which of the following is true?

(A) 1/3 < M < 1/2 (B) 1/5 < M < 1/3 (C) 1/7 < M < 1/5 (D) 1/9 < M < 1/7 (E) 1/12 < M < 1/9

Given that \(M=\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{300}\). Notice that 1/201 is the larges term and 1/300 is the smallest term.

If all 100 terms were equal to 1/300, then the sum would be 100/300=1/3, but since actual sum is more than that, then we have that M>1/3.

If all 100 terms were equal to 1/200, then the sum would be 100/200=1/2, but since actual sum is less than that, then we have that M<1/2.

Therefore, 1/3<M<1/2.

Answer: A.

WOW, that is elegant! Bunuel please suggest if we can use the next assumption: Arithmetic mean of the elements a1 and a100= 501/(300*2*201). Sum of all elements = 100*Arithmetic mean=167/(6*67)= 167/402 , which is definitely more than 1/3. A Thanks
_________________

Re: M is the sum of the reciprocals of the consecutive integers [#permalink]

Show Tags

05 Sep 2013, 23:44

3

This post received KUDOS

1

This post was BOOKMARKED

I did this similar to the post above.

Between 201 and 300 there are 100 numbers (300-201+1 = 100). Since the integers 201 to 300 are consecutive, the middle number is ((201+300)/2) which is roughly 250. Therefore, the sum is approximately:

Re: M is the sum of the reciprocals of the consecutive integers [#permalink]

Show Tags

28 Nov 2013, 20:21

1

This post received KUDOS

2

This post was BOOKMARKED

Walkabout wrote:

M is the sum of the reciprocals of the consecutive integers from 201 to 300, inclusive. Which of the following is true?

(A) 1/3 < M < 1/2 (B) 1/5 < M < 1/3 (C) 1/7 < M < 1/5 (D) 1/9 < M < 1/7 (E) 1/12 < M < 1/9

There is also an another easier way to solve this problem - using sum and average concept. 1. The numbers are reciprocal of consecutive numbers. Total number of items = 100 (201-300 +1 ) => Middle term is 250 and the number is the reciprocal which is 1/250.

2. Now we know for consecutive numbers and odd number of terms, Average = Middle number (also Average = Median) and Average in general is Sum / Number of terms. In this case average = 1/250.

Hence, we have Average (1/250) = Sum / 100. Solving this sum = 100/250 = 0.4

From the answer choices, 0.4 is between 1/3 and 1/5.

M is the sum of the reciprocals of the consecutive integers from 201 to 300, inclusive. Which of the following is true?

(A) 1/3 < M < 1/2 (B) 1/5 < M < 1/3 (C) 1/7 < M < 1/5 (D) 1/9 < M < 1/7 (E) 1/12 < M < 1/9

There is also an another easier way to solve this problem - using sum and average concept. 1. The numbers are reciprocal of consecutive numbers. Total number of items = 100 (201-300 +1 ) => Middle term is 250 and the number is the reciprocal which is 1/250.

2. Now we know for consecutive numbers and odd number of terms, Average = Middle number (also Average = Median) and Average in general is Sum / Number of terms. In this case average = 1/250.

Hence, we have Average (1/250) = Sum / 100. Solving this sum = 100/250 = 0.4

From the answer choices, 0.4 is between 1/3 and 1/5.

First of all the average of consecutive integers from 201 to 300, inclusive is (201+300)/2=250.5 not 250.

Next, set {1/201, 1/202, 1/203, ..., 1/300} is NOT evenly spaced, thus your method is an approximation (the formula you apply is for an evenly spaced set).

Re: M is the sum of the reciprocals of the consecutive integers [#permalink]

Show Tags

29 Nov 2013, 11:45

Bunuel wrote:

coolparthi wrote:

Walkabout wrote:

M is the sum of the reciprocals of the consecutive integers from 201 to 300, inclusive. Which of the following is true?

(A) 1/3 < M < 1/2 (B) 1/5 < M < 1/3 (C) 1/7 < M < 1/5 (D) 1/9 < M < 1/7 (E) 1/12 < M < 1/9

There is also an another easier way to solve this problem - using sum and average concept. 1. The numbers are reciprocal of consecutive numbers. Total number of items = 100 (201-300 +1 ) => Middle term is 250 and the number is the reciprocal which is 1/250.

2. Now we know for consecutive numbers and odd number of terms, Average = Middle number (also Average = Median) and Average in general is Sum / Number of terms. In this case average = 1/250.

Hence, we have Average (1/250) = Sum / 100. Solving this sum = 100/250 = 0.4

From the answer choices, 0.4 is between 1/3 and 1/5.

First of all the average of consecutive integers from 201 to 300, inclusive is (201+300)/2=250.5 not 250.

Next, set {1/201, 1/202, 1/203, ..., 1/300} is NOT evenly spaced, thus your method is an approximation (the formula you apply is for an evenly spaced set).

Re: M is the sum of the reciprocals of the consecutive integers [#permalink]

Show Tags

30 Nov 2013, 22:47

There is another simple way to do this problem, when reciprocals of numbers from 201 to 300 are added...then it means the denominators are in Arithmetic progression...so 1/201, 1/202, ---, 1/300 are in Harmonic progression. Sum of all these numbers is (# of terms)*(2*First term*Last term)/(First term+Last term) which is (2*(1/201)*(1/300))/(1/201+1/300)...simplifying gives us 200/501 ~ 200/500 = 1/2.5 so lies between 1/3 and 1/2 Ans A.

Re: M is the sum of the reciprocals of the consecutive integers [#permalink]

Show Tags

02 Jan 2014, 08:14

I will go with percentage If all are 1/201 then (1/201)*100=close to 1/2% so sum= (1/2)*100 =50% Again, if all are 1/300 then (1/300)*100= 1/3% so sum = (1/3)*100 =33.33%

Re: M is the sum of the reciprocals of the consecutive integers [#permalink]

Show Tags

07 Jan 2014, 19:05

Bunuel wrote:

coolparthi wrote:

Walkabout wrote:

M is the sum of the reciprocals of the consecutive integers from 201 to 300, inclusive. Which of the following is true?

(A) 1/3 < M < 1/2 (B) 1/5 < M < 1/3 (C) 1/7 < M < 1/5 (D) 1/9 < M < 1/7 (E) 1/12 < M < 1/9

There is also an another easier way to solve this problem - using sum and average concept. 1. The numbers are reciprocal of consecutive numbers. Total number of items = 100 (201-300 +1 ) => Middle term is 250 and the number is the reciprocal which is 1/250.

2. Now we know for consecutive numbers and odd number of terms, Average = Middle number (also Average = Median) and Average in general is Sum / Number of terms. In this case average = 1/250.

Hence, we have Average (1/250) = Sum / 100. Solving this sum = 100/250 = 0.4

From the answer choices, 0.4 is between 1/3 and 1/5.

First of all the average of consecutive integers from 201 to 300, inclusive is (201+300)/2=250.5 not 250.

Next, set {1/201, 1/202, 1/203, ..., 1/300} is NOT evenly spaced, thus your method is an approximation (the formula you apply is for an evenly spaced set).

Hope it's clear.

Is there a reason why the "evenly spaced set" strategy works for this problem but wouldn't work for other problems? For example, what if the question asked for the sum of the consecutive odd reciprocals, or the sum of the reciprocals of consecutive multiples of 7? Would you use the same strategy you mentioned and just set the minimum to (100)(1/207)?

Re: M is the sum of the reciprocals of the consecutive integers [#permalink]

Show Tags

11 Jun 2014, 02:53

I thought about it this way.

First we know that 1/201.....to 1/300 = 100 terms. And that in fractions the higher the denominator value relative to the numerator the smaller the fraction. i.e because 1 < 201. therefore 1/200 > 1/201....or for that matter the sum of terms 1/201 to 1/300.

So 1/200 * 100 you get M must be <1/2.

Take a quick glance at the answer choices and you see that only A addresses this fact.

Choose A and move along.

The question is testing your ability to recognize that the higher the denominator value the smaller the number once you recognize this the answer becomes clear

Re: M is the sum of the reciprocals of the consecutive integers [#permalink]

Show Tags

21 Jun 2014, 05:00

Will the answer pattern remain the same for the varies interval nos. ?

Suppose , if M is the sum of reciprocals of the cons. integers from 301 to 400 then the answer will be 1/4[m]1/3 ? Is the above generalisation correct ?

Re: M is the sum of the reciprocals of the consecutive integers [#permalink]

Show Tags

22 Jun 2014, 00:36

1

This post received KUDOS

kshitij89 wrote:

Will the answer pattern remain the same for the varies interval nos. ?

Suppose , if M is the sum of reciprocals of the cons. integers from 301 to 400 then the answer will be 1/4[m]1/3 ? Is the above generalisation correct ?

your generalization would be correct but as you notice this form of pattern matching is a quick way to get to the right answer when you are short of time AND yes this holds true for 1/101 to 200, 1/201 to 300, 1/301 to 400 .......etc. Hope this helps.

We’ve given one of our favorite features a boost! You can now manage your profile photo, or avatar , right on WordPress.com. This avatar, powered by a service...

Sometimes it’s the extra touches that make all the difference; on your website, that’s the photos and video that give your content life. You asked for streamlined access...

A lot has been written recently about the big five technology giants (Microsoft, Google, Amazon, Apple, and Facebook) that dominate the technology sector. There are fears about the...

Post today is short and sweet for my MBA batchmates! We survived Foundations term, and tomorrow's the start of our Term 1! I'm sharing my pre-MBA notes...