It is currently 17 Oct 2017, 01:16

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# m05 #36

Author Message
Senior Manager
Joined: 31 Aug 2009
Posts: 415

Kudos [?]: 347 [0], given: 20

Location: Sydney, Australia

### Show Tags

19 Nov 2009, 05:49
Quote:
If $$a$$ , $$b$$ , and $$c$$ are positive distinct integers, is $$\frac{(\frac{a}{b})}{c}$$ an integer?

1. $$c = 2$$
2. $$a = b + c$$

* Statement (1) ALONE is sufficient, but Statement (2) ALONE is not sufficient
* Statement (2) ALONE is sufficient, but Statement (1) ALONE is not sufficient
* BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient
* EACH statement ALONE is sufficient
* Statements (1) and (2) TOGETHER are NOT sufficient

Statement (1) by itself is insufficient.

Statement (2) by itself is sufficient. There is no combination that would allow divisibility into an integer for distinct integers such as $$a$$ , $$b$$ , and $$c$$ .

Not quite satisfied with the OE for Statement 2. From picking numbers you can sort of figure it out but is there another method?

Kudos [?]: 347 [0], given: 20

Manager
Joined: 29 Oct 2009
Posts: 211

Kudos [?]: 1619 [0], given: 18

GMAT 1: 750 Q50 V42

### Show Tags

19 Nov 2009, 07:22
yangsta8 wrote:
Not quite satisfied with the OE for Statement 2. From picking numbers you can sort of figure it out but is there another method?

Question Stem : Is $$\frac{(\frac{a}{b})}{c}$$ an integer?
Condition given is a, b and c are positive distinct integers.

I will just give the reasoning for St. (2) since that is what you have a problem with.

St. (2) : a = b + c
Substituting this in the question stem we get : Is $$\frac{b+c}{bc}$$ an integer?
It can be further reduced to : Is $$\frac{1}{c} + \frac{1}{b}$$ an integer?
Now we can have two cases :

Case 1 : When either b or c is = 1
In this case, the minimum value for the other will be 2. Therefore the maximum value of $$\frac{1}{c} + \frac{1}{b}$$ will be 1.5.
Also, since $$\frac{1}{c}$$ or $$\frac{1}{b}$$ can never be 0, the value of $$\frac{1}{c} + \frac{1}{b}$$ will always be greater than 1. Hence it can never be an integer.

Case 2 : When a and b are > 1
In this case, the minimum values that and b can take will be 2 and 3. Therefore the maximum value of $$\frac{1}{c} + \frac{1}{b}$$ will be $$\frac{1}{2} + \frac{1}{3}$$ = $$\frac{5}{6}$$
Also, since $$\frac{1}{c} + \frac{1}{b}$$ can never be 0, the values for $$\frac{1}{c} + \frac{1}{b}$$ will be greater than 0 but less than equal to $$\frac{5}{6}$$. Hence it can never be an integer.

Since both cases in St. (2) tell us that $$\frac{(\frac{a}{b})}{c}$$ can never be an integer, St. (2) is sufficient.

_________________

Click below to check out some great tips and tricks to help you deal with problems on Remainders!
http://gmatclub.com/forum/compilation-of-tips-and-tricks-to-deal-with-remainders-86714.html#p651942

1) Translating the English to Math : http://gmatclub.com/forum/word-problems-made-easy-87346.html

Kudos [?]: 1619 [0], given: 18

Re: m05 #36   [#permalink] 19 Nov 2009, 07:22
Display posts from previous: Sort by

# m05 #36

Moderator: Bunuel

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.