When the question says "What is the value of..." the question is asking if we have enough information to determine a single value. There are 2 variables in the equation provided (x and y) and S1 only gives us a value for x. The equation is not equal to anything, ti's just an equation. IF THE QUESTON HAD provided the equation of \(6x^2 + 9y^2 = 33\), then providing us with the value of a single variable WOULD be enough to find the value of y and therefore would be sufficient, but this information is still missing. Look at every problem as if it has 2 varaibles.

a = b

Sometimes we know one variable, such as a = 2. If a = 2, then b = 2. If we have a more complext problem, we have \(a^2 + b = c\). Now we have 3 variables. This is similar to the equation given. While the question isn't written with that third variable visible, it is present. Its the variable we're trying to solve for. It \(6x^2 + 9y^2 = z\) and we need to find z. So anytime you have 3 variables, in order to solve for the entire equation to a single value, you need to know the value of AT LEAST 2 of those variables. [There are exceptions to this, but as a general rule, knowing the information necessary to solve the equation is a vital step in doing Data Sufficiency questions.]

smarinov wrote:

What is the value of the following expression: \(6x^2 + 9y^2?\)

1. \(x = 2\)

2. \(6y^2 + 4x^2 = 22\)

* Statement (1) ALONE is sufficient, but Statement (2) ALONE is not sufficient

* Statement (2) ALONE is sufficient, but Statement (1) ALONE is not sufficient

* BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient

* EACH statement ALONE is sufficient

* Statements (1) and (2) TOGETHER are NOT sufficient

Statement 1 provides us with value of x but it is insufficient to answer the whole question

Statement 2 provides us with necessary information: we need to multiply the second statement times 1.5 and we will get our result: \(33 = 9y^2 + 6x^2\)

How is x = 2 no sufficient? If we know the value for x we can solve for y and then add the two.

Thank you.

_________________

------------------------------------

J Allen Morris

**I'm pretty sure I'm right, but then again, I'm just a guy with his head up his a$$.

GMAT Club Premium Membership - big benefits and savings