Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

\((a + b)^2 = a^2+ 2ab + b^2\) Square of a Sum \((a - b)^2 = a^2 - 2ab + b^2\) Square of a Difference

\(a^n - b^n\) is always divisble by a-b i.e. irrespective of n being odd or even Proof: \(a^2 - b^2 = (a-b)(a+b)\) \(a^3 - b^3 = (a-b)(a^2+ab+b^2)\)

Thus divisible by a- b in both cases where n = 2 i.e. even and 3 i.e. odd

\(a^n + b^n\) is divisble by a+b i.e. only if n = odd Proof: \(a^3 - b^3 = (a+b)(a^2-ab+b^2)\) Thus divisible by a + b as n = 3 i.e. odd
_________________

I'm not sure whether I undertood the below rule correctly:

"Integer ending with 0, 1, 5 or 6, in the integer power k>0, has the same last digit as the base".

55^2 = 3025 - the last digit is same as the base (5) so the above rule works. 55^10 = 253295162119141000 - the last digit is not same as the base (5) so the above rule doesn't work.

I'm not sure whether I undertood the below rule correctly:

"Integer ending with 0, 1, 5 or 6, in the integer power k>0, has the same last digit as the base".

55^2 = 3025 - the last digit is same as the base (5) so the above rule works. 55^10 = 25329516211914100[b]0[/b] - the last digit is not same as the base (5) so the above rule doesn't work.

Please help if I have misunderstood the rule.

5 in any positive integer power has 5 as the units digit.

5^1=5; 5^2=25; 5^3=125 ... 5^10=253,295,162,119,140,625 (your result was just rounded).

Awesome post. Bunuel, you are great. Love your posts.
_________________

GMAT RC Vocab - No nonsense(Only for GMAT) http://gmatclub.com/forum/gmat-rc-vocab-no-nonsense-only-for-gmat-162129.html#p1283165

Quant Document to revise a week before exam - Mixedbag http://gmatclub.com/forum/document-to-revise-a-week-before-exam-mixedbag-162145.html

Best questions to revise few days before exam- Mixed bag(25) http://gmatclub.com/forum/best-questions-to-revise-few-days-before-exam-mixed-bag-162124.html#p1283141

1. Last digit of \((xyz)^n\) is the same as that of \(z^n\); 2. Determine the cyclicity number \(c\) of \(z\); 3. Find the remainder \(r\) when \(n\) divided by the cyclisity; 4. When \(r>0\), then last digit of \((xyz)^n\) is the same as that of \(z^r\) and when \(r=0\), then last digit of \((xyz)^n\) is the same as that of \(z^c\), where \(c\) is the cyclisity number.

• Integer ending with 0, 1, 5 or 6, in the integer power k>0, has the same last digit as the base. • Integers ending with 2, 3, 7 and 8 have a cyclicity of 4. • Integers ending with 4 (eg. \((xy4)^n\)) have a cyclisity of 2. When n is odd \((xy4)^n\) will end with 4 and when n is even \((xy4)^n\) will end with 6. • Integers ending with 9 (eg. \((xy9)^n\)) have a cyclisity of 2. When n is odd \((xy9)^n\) will end with 9 and when n is even \((xy9)^n\) will end with 1.

Example: What is the last digit of \(127^{39}\)? Solution: Last digit of \(127^{39}\) is the same as that of \(7^{39}\). Now we should determine the cyclisity of \(7\):

1. 7^1=7 (last digit is 7) 2. 7^2=9 (last digit is 9) 3. 7^3=3 (last digit is 3) 4. 7^4=1 (last digit is 1) 5. 7^5=7 (last digit is 7 again!) ...

So, the cyclisity of 7 is 4.

Now divide 39 (power) by 4 (cyclisity), remainder is 3.So, the last digit of \(127^{39}\) is the same as that of the last digit of \(7^{39}\), is the same as that of the last digit of \(7^3\), which is \(3\).

Congratulation and thank you very much for the post, but in the LAST DIGIT OF A POWER i have an issue, when i try to solve the last digit of (456)^35 with the process i just don't get the correct answers, with the process above gives me 6^4 which is 1296=6 and with calculator its 0, can you explain me that case?

1. Last digit of \((xyz)^n\) is the same as that of \(z^n\); 2. Determine the cyclicity number \(c\) of \(z\); 3. Find the remainder \(r\) when \(n\) divided by the cyclisity; 4. When \(r>0\), then last digit of \((xyz)^n\) is the same as that of \(z^r\) and when \(r=0\), then last digit of \((xyz)^n\) is the same as that of \(z^c\), where \(c\) is the cyclisity number.

• Integer ending with 0, 1, 5 or 6, in the integer power k>0, has the same last digit as the base. • Integers ending with 2, 3, 7 and 8 have a cyclicity of 4. • Integers ending with 4 (eg. \((xy4)^n\)) have a cyclisity of 2. When n is odd \((xy4)^n\) will end with 4 and when n is even \((xy4)^n\) will end with 6. • Integers ending with 9 (eg. \((xy9)^n\)) have a cyclisity of 2. When n is odd \((xy9)^n\) will end with 9 and when n is even \((xy9)^n\) will end with 1.

Example: What is the last digit of \(127^{39}\)? Solution: Last digit of \(127^{39}\) is the same as that of \(7^{39}\). Now we should determine the cyclisity of \(7\):

1. 7^1=7 (last digit is 7) 2. 7^2=9 (last digit is 9) 3. 7^3=3 (last digit is 3) 4. 7^4=1 (last digit is 1) 5. 7^5=7 (last digit is 7 again!) ...

So, the cyclisity of 7 is 4.

Now divide 39 (power) by 4 (cyclisity), remainder is 3.So, the last digit of \(127^{39}\) is the same as that of the last digit of \(7^{39}\), is the same as that of the last digit of \(7^3\), which is \(3\).

Congratulation and thank you very much for the post, but in the LAST DIGIT OF A POWER i have an issue, when i try to solve the last digit of (456)^35 with the process i just don't get the correct answers, with the process above gives me 6^4 which is 1296=6 and with calculator its 0, can you explain me that case?

Any integer with 6 as its units digit in any positive integer power has the units digit of 6 (integers ending with 0, 1, 5 or 6, in the integer power k>0, has the same last digit as the base.). For example, (xxx6)^(positive integer) has the units digit of 6.

The reason you get 0 as the units digit of (456)^35 is because it's a huge number and simple calculator rounds the result.

Exact result is: 1,158,162,485,059,181,044,784,824,077,056,791,483,879,723,809,565,243,305,114,019,731,744,476,935,058,125,438,332,149,170,176.

Today we’re excited to announce two new premium themes: Small Business and Photo Blog . Small Business Small Business is a new premium theme for your entrepreneurial endeavors. At...

As part of our commitment to privacy and transparency, we’re updating our Privacy Policy . We want to give you more and clearer information about how we collect and use...

Product Leadership is a book that distills the best practices of Product Management into one source. Mark Ericsson is the founder of Product Tank and Mind the Product and...

“Keep your head down, and work hard. Don’t attract any attention. You should be grateful to be here.” Why do we keep quiet? Being an immigrant is a constant...