Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

What is the quickest way to figure out whether a number is prime?

Unfortunately, there is no such quick way to say that this number is prime. You can remember all numbers till 50 and then use rule:

Rule: To check whether a number is prime or not, we try to divide it by 2, 3, 5 and so on. You can stop at \(\sqrt{number}\) - it is enough. Why? Because if there is prime divisor greater than \(\sqrt{number}\), there must be another prime divisor lesser than \(\sqrt{number}\).

Example,

n = 21 -- > \(\sqrt{21}\)~ 4-5 So, we need to check out only 2,3 because for 7, for instance, we have already checked out 3.

n = 101 --> 2,3,5 is out (the last digit is not even or 5 and sum of digits is not divisible by 3). we need to check out only 7
_________________

Appreciate the very prompt response, walker. To your point re divisibility by 7: I'm having a hard time proving this algebraically, is it a fair statement to say that the only non-prime numbers of the form 6n-1 and 6n+1 are the ones that are divisible by 7?

If so, a quick way to check whether a big number is prime would be to: 1) check whether it's of the form 6n-1 or 6n+1 2) check whether it's divisible by 7

I'll break it into several smaller ones in a day or two.

Any comments, advises and/or corrections are highly appreciated.

What Topic are we talking abt??
_________________

Cheers! JT........... If u like my post..... payback in Kudos!!

|Do not post questions with OA|Please underline your SC questions while posting|Try posting the explanation along with your answer choice| |For CR refer Powerscore CR Bible|For SC refer Manhattan SC Guide|

I m confused about the extent of level for number properties.. do we have to remmeber eculer's, fermat's,wilson's theorem on prime number. Actually I found their application to be quite useful but m not sure whther there are other ways to solve the questions as well. eg difficult remainder questions and questions on HCF like if HCF of 2 numbers is 13 and their sum is 2080, how many such pairs are possible? do we see such questions on gmat?
_________________

I m confused about the extent of level for number properties.. do we have to remmeber eculer's, fermat's,wilson's theorem on prime number. Actually I found their application to be quite useful but m not sure whther there are other ways to solve the questions as well. eg difficult remainder questions and questions on HCF like if HCF of 2 numbers is 13 and their sum is 2080, how many such pairs are possible? do we see such questions on gmat?

I don't think that these theorems are needed for GMAT.
_________________

So is there any way we can solve the above HCF question? Also does the number theory stated here is sufficient to cover the concepts asked?
_________________

Example: A company received $2 million in royalties on the first $10 million in sales and then $8 million in royalties on the next $100 million in sales. By what percent did the ratio of royalties to sales decrease from the first $10 million in sales to the next $100 million in sales?

Solution: Percent decrease can be calculated by the formula above: Percent=\frac{Change}{Original}*100=\frac{\frac{2}{10}-\frac{10}{100}}{\frac{2}{10}}*100=50%, so the royalties decreased by 50%.

I could not get this , i think there is some error... Plzz explain..

as the same Q in Percent Part of Math book is giving an answer of 60 %..

There was a typo. I edited it in Percent section and forgot to edit it here. Now it's OK. Thanks. +1 for spotting this.
_________________

Example: A company received $2 million in royalties on the first $10 million in sales and then $8 million in royalties on the next $100 million in sales. By what percent did the ratio of royalties to sales decrease from the first $10 million in sales to the next $100 million in sales?

Solution: Percent decrease can be calculated by the formula above: Percent=\frac{Change}{Original}*100=\frac{\frac{2}{10}-\frac{10}{100}}{\frac{2}{10}}*100=50%, so the royalties decreased by 50%.

I could not get this , i think there is some error... Plzz explain..

as the same Q in Percent Part of Math book is giving an answer of 60 %..

2 million royalties on 10 million in sales is equivalent to 20 million royalties on 100 million sales (multiply both number by 10). Going down from 20 million royalties to 8 million royalties is a decrease of 60%.

If a is a factor of bc, and gcd(a,b)=1, then a is a factor of c.

Can anyone please explain this rule??? I'm not sure what it means by gcd(a,b)=1.

Thanks a bunch and great summary !!!!!

\(gcd(a,b)=1\) means that greatest common divisor of \(a\) and \(b\) is 1, or in other words they are co-prime, the don't share any common factor but 1. So if we are told that \(a\) is a factor of \(bc\) and \(a\) and \(b\) don't share any common factors, then it must be true that \(a\) is a factor of only \(c\).

So if \(a=3\), \(b=5\) (\(a\) and \(b\) don't share any common factors but 1, \(gcd(a,b)=1\)), \(c=6\) \(bc=30\) --> \(a=3\) is a factor of \(c=6\).
_________________

Today we’re excited to announce two new premium themes: Small Business and Photo Blog . Small Business Small Business is a new premium theme for your entrepreneurial endeavors. At...

As part of our commitment to privacy and transparency, we’re updating our Privacy Policy . We want to give you more and clearer information about how we collect and use...

Product Leadership is a book that distills the best practices of Product Management into one source. Mark Ericsson is the founder of Product Tank and Mind the Product and...

“Keep your head down, and work hard. Don’t attract any attention. You should be grateful to be here.” Why do we keep quiet? Being an immigrant is a constant...