GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 05 Dec 2019, 12:52 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # Math: Standard Deviation

Author Message
TAGS:

### Hide Tags

Manager  Status: Happy to join ROSS!
Joined: 29 Sep 2010
Posts: 249
Concentration: General Management, Strategy
Schools: Ross '14 (M\$)

### Show Tags

To confirm understanding: if we rephrase the example 4 to say:
Example #4
Q: There is a set A of 19 integers with mean 4 and standard deviation of 3. Now we form a new set B by adding 2 more elements to the set A. What two elements will increase the standard deviation the most?
A) 9 and 3
B) -3 and 3
C) 6 and 1
D) 4 and 5
E) 5 and 5

Then the solution will be B (gives 8 points increase to the variation)?
Manager  Joined: 08 Sep 2010
Posts: 91

### Show Tags

Vorskl wrote:
To confirm understanding: if we rephrase the example 4 to say:
Example #4
Q: There is a set A of 19 integers with mean 4 and standard deviation of 3. Now we form a new set B by adding 2 more elements to the set A. What two elements will increase the standard deviation the most?
A) 9 and 3
B) -3 and 3
C) 6 and 1
D) 4 and 5
E) 5 and 5

Then the solution will be B
 (gives 8 points increase to the variation)
?

Your answer is correct but the "variance" need not be an increase of 8.
Manager  Joined: 08 Sep 2010
Posts: 91

### Show Tags

Not seen any questions for Normal distribution, is it tested on GMAT?
CEO  B
Joined: 17 Nov 2007
Posts: 2996
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40 ### Show Tags

puneetj wrote:
Not seen any questions for Normal distribution, is it tested on GMAT?

You are right. I should change "you can rarely see" to "you will never see"
_________________
HOT! GMAT Club Forum 2020 | GMAT ToolKit 2 (iOS) - The OFFICIAL GMAT CLUB PREP APPs, must-have apps especially if you aim at 700+
Intern  Joined: 17 May 2011
Posts: 1
Location: Summit

### Show Tags

Very very useful and easy to understand.Thanks so much Intern  Joined: 29 Jun 2011
Posts: 20

### Show Tags

1
Could you pls explain why (2) alone is not insufficient? Is it because we don't have information of the number elements? that's why (2) is telling nothing useful? thanks....

Example #2
Q: There is a set of consecutive even integers. What is the standard deviation of the set?
(1) There are 39 elements in the set.
(2) the mean of the set is 382.
CEO  B
Joined: 17 Nov 2007
Posts: 2996
Concentration: Entrepreneurship, Other
Schools: Chicago (Booth) - Class of 2011
GMAT 1: 750 Q50 V40 ### Show Tags

1
yes, you are right.

it can be {380,382,384} or {378, 380,382,384, 386} for example. Standard deviation of second set is greater than that of first set.
_________________
HOT! GMAT Club Forum 2020 | GMAT ToolKit 2 (iOS) - The OFFICIAL GMAT CLUB PREP APPs, must-have apps especially if you aim at 700+
Intern  B
Joined: 11 Jul 2012
Posts: 47
GMAT 1: 650 Q49 V29 ### Show Tags

walker wrote:
yes, you are right.

it can be {380,382,384} or {378, 380,382,384, 386} for example. Standard deviation of second set is greater than that of first set.

I know this is an old post but need to clear this concept..... Please explain how statement 1 alone is sufficient as it gives only the number of elements....how can we only use that to answer the question as to what is standard deviation of the set....
Math Expert V
Joined: 02 Sep 2009
Posts: 59561

### Show Tags

avaneeshvyas wrote:
walker wrote:
yes, you are right.

it can be {380,382,384} or {378, 380,382,384, 386} for example. Standard deviation of second set is greater than that of first set.

I know this is an old post but need to clear this concept..... Please explain how statement 1 alone is sufficient as it gives only the number of elements....how can we only use that to answer the question as to what is standard deviation of the set....

Two very important properties of standard deviation:

If we add or subtract a constant to each term in a set:
Mean will increase or decrease by the same constant.
SD will not change.

If we increase or decrease each term in a set by the same percent (multiply all terms by the constant):
Mean will increase or decrease by the same percent.
SD will increase or decrease by the same percent.

You can try it yourself:
SD of a set: {1,1,4} will be the same as that of {5,5,8} as second set is obtained by adding 4 to each term of the first set.

That's because Standard Deviation shows how much variation there is from the mean. And when adding or subtracting a constant to each term we are shifting the mean of the set by this constant (mean will increase or decrease by the same constant) but the variation from the mean remains the same as all terms are also shifted by the same constant.

Back to the original question:

There is a set of consecutive even integers. What is the standard deviation of the set?

(1) There are 39 elements in the set --> SD of a set of ANY 39 consecutive even integers will be the same, as any set of 39 consecutive even integers can be obtained by adding constant to another set of 39 consecutive integers. For example: set of 39 consecutive integers {4, 6, 8, ..., 80} can be obtained by adding 4 to each term of another set of 39 consecutive integers: {0, 2, 4, ..., 76}. So we can calculate SD of {0, 2, 4, ..., 76} and we'll know that no matter what our set actually is, its SD will be the same. Sufficient.

(2) The mean of the set is 382 --> knowing mean gives us nothing, we must know the number of terms in the set, as SD of {380, 382, 384} is different from SD of {378, 380, 382, 384, 386}. Not sufficient.

Hope it's clear.
Intern  B
Joined: 11 Jul 2012
Posts: 47
GMAT 1: 650 Q49 V29 ### Show Tags

Bunuel wrote:
avaneeshvyas wrote:
walker wrote:
yes, you are right.

it can be {380,382,384} or {378, 380,382,384, 386} for example. Standard deviation of second set is greater than that of first set.

I know this is an old post but need to clear this concept..... Please explain how statement 1 alone is sufficient as it gives only the number of elements....how can we only use that to answer the question as to what is standard deviation of the set....

Two very important properties of standard deviation:

If we add or subtract a constant to each term in a set:
Mean will increase or decrease by the same constant.
SD will not change.

If we increase or decrease each term in a set by the same percent (multiply all terms by the constant):
Mean will increase or decrease by the same percent.
SD will increase or decrease by the same percent.

You can try it yourself:
SD of a set: {1,1,4} will be the same as that of {5,5,8} as second set is obtained by adding 4 to each term of the first set.

That's because Standard Deviation shows how much variation there is from the mean. And when adding or subtracting a constant to each term we are shifting the mean of the set by this constant (mean will increase or decrease by the same constant) but the variation from the mean remains the same as all terms are also shifted by the same constant.

Back to the original question:

There is a set of consecutive even integers. What is the standard deviation of the set?

(1) There are 39 elements in the set --> SD of a set of ANY 39 consecutive even integers will be the same, as any set of 39 consecutive even integers can be obtained by adding constant to another set of 39 consecutive integers. For example: set of 39 consecutive integers {4, 6, 8, ..., 80} can be obtained by adding 4 to each term of another set of 39 consecutive integers: {0, 2, 4, ..., 76}. So we can calculate SD of {0, 2, 4, ..., 76} and we'll know that no matter what our set actually is, its SD will be the same. Sufficient.

(2) The mean of the set is 382 --> knowing mean gives us nothing, we must know the number of terms in the set, as SD of {380, 382, 384} is different from SD of {378, 380, 382, 384, 386}. Not sufficient.

Hope it's clear.

Extending your logic can we go on to say that the sum of 39 consecutive even integers will be the same as that of a set with 39 consecutive odd integers and a constant added to it.....E.G: a set {4, 6, 8, ..., 80} can be obtained by adding 3 to a set {1, 3, 5, ..., 77}....
Math Expert V
Joined: 02 Sep 2009
Posts: 59561

### Show Tags

avaneeshvyas wrote:
Bunuel wrote:
avaneeshvyas wrote:
Two very important properties of standard deviation:

If we add or subtract a constant to each term in a set:
Mean will increase or decrease by the same constant.
SD will not change.

If we increase or decrease each term in a set by the same percent (multiply all terms by the constant):
Mean will increase or decrease by the same percent.
SD will increase or decrease by the same percent.

You can try it yourself:
SD of a set: {1,1,4} will be the same as that of {5,5,8} as second set is obtained by adding 4 to each term of the first set.

That's because Standard Deviation shows how much variation there is from the mean. And when adding or subtracting a constant to each term we are shifting the mean of the set by this constant (mean will increase or decrease by the same constant) but the variation from the mean remains the same as all terms are also shifted by the same constant.

Back to the original question:

There is a set of consecutive even integers. What is the standard deviation of the set?

(1) There are 39 elements in the set --> SD of a set of ANY 39 consecutive even integers will be the same, as any set of 39 consecutive even integers can be obtained by adding constant to another set of 39 consecutive integers. For example: set of 39 consecutive integers {4, 6, 8, ..., 80} can be obtained by adding 4 to each term of another set of 39 consecutive integers: {0, 2, 4, ..., 76}. So we can calculate SD of {0, 2, 4, ..., 76} and we'll know that no matter what our set actually is, its SD will be the same. Sufficient.

(2) The mean of the set is 382 --> knowing mean gives us nothing, we must know the number of terms in the set, as SD of {380, 382, 384} is different from SD of {378, 380, 382, 384, 386}. Not sufficient.

Hope it's clear.

Extending your logic can we go on to say that the sum of 39 consecutive even integers will be the same as that of a set with 39 consecutive odd integers and a constant added to it.....E.G: a set {4, 6, 8, ..., 80} can be obtained by adding 3 to a set {1, 3, 5, ..., 77}....

Yes, that's correct.
Intern  B
Joined: 11 Jul 2012
Posts: 47
GMAT 1: 650 Q49 V29 ### Show Tags

So for GMAT sake all we should be concerned about is the number of terms, if a question of Determining the Standard deviation crops up...

Thank you for the brilliant explanation Bunuel.....
Math Expert V
Joined: 02 Sep 2009
Posts: 59561

### Show Tags

avaneeshvyas wrote:
So for GMAT sake all we should be concerned about is the number of terms, if a question of Determining the Standard deviation crops up...

Thank you for the brilliant explanation Bunuel.....

Well, that's not correct. For this question yes, knowing that the set is composed of even integers and knowing the number of the terms in the set is sufficient to determine the standard deviation. But just knowing the number of the terms in a set is certainly not enough.
Intern  B
Joined: 11 Jul 2012
Posts: 47
GMAT 1: 650 Q49 V29 ### Show Tags

Bunuel wrote:
avaneeshvyas wrote:
So for GMAT sake all we should be concerned about is the number of terms, if a question of Determining the Standard deviation crops up...

Thank you for the brilliant explanation Bunuel.....

Well, that's not correct. For this question yes, knowing that the set is composed of even integers and knowing the number of the terms in the set is sufficient to determine the standard deviation. But just knowing the number of the terms in a set is certainly not enough.

could you put in an example for the same and also how then to go about such problems
Math Expert V
Joined: 02 Sep 2009
Posts: 59561

### Show Tags

avaneeshvyas wrote:
Bunuel wrote:
avaneeshvyas wrote:
So for GMAT sake all we should be concerned about is the number of terms, if a question of Determining the Standard deviation crops up...

Thank you for the brilliant explanation Bunuel.....

Well, that's not correct. For this question yes, knowing that the set is composed of even integers and knowing the number of the terms in the set is sufficient to determine the standard deviation. But just knowing the number of the terms in a set is certainly not enough.

could you put in an example for the same and also how then to go about such problems

Check our question banks (viewforumtags.php) for more questions on SD.

DS questions on SD: search.php?search_id=tag&tag_id=34
PS questions on SD: search.php?search_id=tag&tag_id=55

Also, from my signature:
PS SD-problems: [PS Standard Deviation Problems]
DS SD-problems: [DS Standard Deviation Problems]

Hope it helps.
Math Expert V
Joined: 02 Sep 2009
Posts: 59561

### Show Tags

Bumping for review*.

*New project from GMAT Club!!! Check HERE

Intern  Joined: 24 Dec 2013
Posts: 1

### Show Tags

Under the "Properties "section , when a new element is added to a set ,it says , newer standard deviation is greater than the older standard deviation if | y - mean| >older standard deviation. Which mean is it alluding to? The mean after having a new element in the set or the old mean without the new element?

Posted from my mobile device
Intern  Joined: 25 Jan 2014
Posts: 44
GMAT 1: 600 Q44 V29 GMAT 2: 710 Q48 V38 GPA: 3.35
WE: Analyst (Computer Software)

### Show Tags

Bunuel, so even for a set of consecutive odd integers, the S.D will be the same for a particular number of integers, whatever the integers may be?
Math Expert V
Joined: 02 Sep 2009
Posts: 59561

### Show Tags

gaurav1418z wrote:
Bunuel, so even for a set of consecutive odd integers, the S.D will be the same for a particular number of integers, whatever the integers may be?

For equal number of terms, yes. For example, {1, 3, 5, 7} and {11, 13, 15, 17} have the same standard deviation: $$\sqrt{5}$$.
Intern  Joined: 13 Jun 2015
Posts: 4

### Show Tags

walker wrote:
...or it means that Standard deviation of any 39 consecitive even integers will be same as they are equally distributed with respect to the avarge ?

Exactly. Let's look at simple example,

{4,6,8} and {1004,1006,1008} they have the same STD because all elements of second set are shifted by constant number 1000.

thanks for the explanation but shouldn't the number here be "2" instead of "1000"? Re: Math: Standard Deviation   [#permalink] 03 Sep 2015, 11:25

Go to page   Previous    1   2   3    Next  [ 49 posts ]

Display posts from previous: Sort by

# Math: Standard Deviation  