GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 22 Jan 2019, 02:36

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in January
PrevNext
SuMoTuWeThFrSa
303112345
6789101112
13141516171819
20212223242526
272829303112
Open Detailed Calendar
• ### The winners of the GMAT game show

January 22, 2019

January 22, 2019

10:00 PM PST

11:00 PM PST

In case you didn’t notice, we recently held the 1st ever GMAT game show and it was awesome! See who won a full GMAT course, and register to the next one.
• ### Key Strategies to Master GMAT SC

January 26, 2019

January 26, 2019

07:00 AM PST

09:00 AM PST

Attend this webinar to learn how to leverage Meaning and Logic to solve the most challenging Sentence Correction Questions.

# Meg and Bob are among the 5 participants in a cycling race.

Author Message
TAGS:

### Hide Tags

Target Test Prep Representative
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2830
Re: Meg and Bob are among the 5 participants in a cycling race.  [#permalink]

### Show Tags

05 Sep 2017, 17:06
marcodonzelli wrote:
Meg and Bob are among the 5 participants in a cycling race. If each participant finishes the race and no two participants finish at the same time, in how many different possible orders can the participants finish the race so that Meg finishes ahead of Bob?

A. 24
B. 30
C. 60
D. 90
E. 120

We can create the following equation:

total number of ways to finish the race = number of ways Meg finishes ahead of Bob + number of ways Meg does not finish ahead of Bob

Since the total number of ways to complete the race is 5! = 120, and since there are an equal number of ways for Meg to finish ahead Bob as there are for her not to finish ahead of Bob, Meg can finish ahead of Bob in 60 ways.

Alternate Solution:

If Meg comes in the first, then Bob can finish the race in any of the remaining positions, so there are 4! = 24 ways this could happen.

If Meg comes in the second, there are 3 choices for the first spot (since Bob can’t finish ahead of Meg) and the last 3 spots can be filled in 3! ways; so there are 3 x 3! = 3 x 6 = 18 ways this could happen.

If Meg comes in the third, there are 3 choices for the first spot, 2 choices for the second spot, 2 choices for the fourth spot, and 1 choice for the last spot; so, this could happen in 3 x 2 x 2 = 12 ways.

Finally, if Meg comes in the fourth, then Bob must finish last and the first 3 spots can be filled in 3! = 6 ways.

Note that Meg cannot finish the race in the last position because then Bob will have finished the race ahead of Meg.

In total, there are 24 + 18 + 12 + 6 = 60 ways Meg can finish the race ahead of Bob.

_________________

Jeffery Miller

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

CEO
Joined: 11 Sep 2015
Posts: 3355
Re: Meg and Bob are among the 5 participants in a cycling race.  [#permalink]

### Show Tags

21 Apr 2018, 06:16
Top Contributor
marcodonzelli wrote:
Meg and Bob are among the 5 participants in a cycling race. If each participant finishes the race and no two participants finish at the same time, in how many different possible orders can the participants finish the race so that Meg finishes ahead of Bob?

A. 24
B. 30
C. 60
D. 90
E. 120

We can arrange the 5 people in 5! ways (= 120 ways).
Notice that, for HALF of these arrangements, Bob will be ahead of Meg.
For the OTHER HALF, Meg will be ahead of Bob.

So, the number of arrangements where Meg finishes ahead of Bob = 120/2
= 60

Cheers,
Brent
_________________

Test confidently with gmatprepnow.com

Re: Meg and Bob are among the 5 participants in a cycling race. &nbs [#permalink] 21 Apr 2018, 06:16

Go to page   Previous    1   2   [ 22 posts ]

Display posts from previous: Sort by