It is currently 17 Feb 2018, 11:51

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

NEW!!! Tough and tricky exponents and roots questions

Author Message
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 43785
NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

12 Jan 2012, 02:03
55
KUDOS
Expert's post
313
This post was
BOOKMARKED
Exponents and roots problems are very common on the GMAT. So, it's extremely important to know how to manipulate them, how to factor out, take roots, multiply, divide, etc. Below are 11 problems to test your skills. Please post your thought process/solutions along with the answers.

I'll post OA's with detailed solutions tomorrow. Good luck.

1. What is the value of $$\sqrt{25+10\sqrt{6}}+\sqrt{25-10\sqrt{6}}$$?
A. $$2\sqrt{5}$$
B. $$\sqrt{55}$$
C. $$2\sqrt{15}$$
D. 50
E. 60

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029216

2. What is the units digit of $$(17^3)^4-1973^{3^2}$$?
A. 0
B. 2
C. 4
D. 6
E. 8

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029219

3. If $$5^{10x}=4,900$$ and $$2^{\sqrt{y}}=25$$ what is the value of $$\frac{(5^{(x-1)})^5}{4^{-\sqrt{y}}}$$?
A. 14/5
B. 5
C. 28/5
D. 13
E. 14

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029221

4. What is the value of $$5+4*5+4*5^2+4*5^3+4*5^4+4*5^5$$?
A. 5^6
B. 5^7
C. 5^8
D. 5^9
E. 5^10

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029222

5. If $$x=23^2*25^4*27^6*29^8$$ and is a multiple of $$26^n$$, where $$n$$ is a non-negative integer, then what is the value of $$n^{26}-26^n$$?
A. -26
B. -25
C. -1
D. 0
E. 1

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029223

6. If $$x=\sqrt[5]{-37}$$ then which of the following must be true?
A. $$\sqrt{-x}>2$$
B. x>-2
C. x^2<4
D. x^3<-8
E. x^4>32

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029224

7. If $$x=\sqrt{10}+\sqrt[3]{9}+\sqrt[4]{8}+\sqrt[5]{7}+\sqrt[6]{6}+\sqrt[7]{5}+\sqrt[8]{4}+\sqrt[9]{3}+\sqrt[10]{2}$$, then which of the following must be true:
A. x<6
B. 6<x<8
C. 8<x<10
D. 10<x<12
E. x>12

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029227

8. If $$x$$ is a positive number and equals to $$\sqrt{6+{\sqrt{6+\sqrt{6+\sqrt{6+...}}}}}$$, where the given expression extends to an infinite number of roots, then what is the value of x?
A. $$\sqrt{6}$$
B. 3
C. $$1+\sqrt{6}$$
D. $$2\sqrt{3}$$
E. 6

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029228

9. If $$x$$ is a positive integer then the value of $$\frac{22^{22x}-22^{2x}}{11^{11x}-11^x}$$ is closest to which of the following?
A. $$2^{11x}$$
B. $$11^{11x}$$
C. $$22^{11x}$$
D. $$2^{22x}*11^{11x}$$
E. $$2^{22x}*11^{22x}$$

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029229

10. Given that $$5x=125-3y+z$$ and $$\sqrt{5x}-5-\sqrt{z-3y}=0$$, then what is the value of $$\sqrt{\frac{45(z-3y)}{x}}$$?
A. 5
B. 10
C. 15
D. 20
E. Can not be determined

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029231

11. If $$x>0$$, $$x^2=2^{64}$$ and $$x^x=2^y$$ then what is the value of $$y$$?
A. 2
B. 2^(11)
C. 2^(32)
D. 2^(37)
E. 2^(64)

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029232
_________________
Manager
Status: love the club...
Joined: 24 Mar 2015
Posts: 247
NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

28 Sep 2017, 02:30
Bunuel wrote:
5. If $$x=23^2*25^4*27^6*29^8$$ and is a multiple of $$26^n$$, where $$n$$ is a non-negative integer, then what is the value of $$n^{26}-26^n$$?
A. -26
B. -25
C. -1
D. 0
E. 1

$$23^2*25^4*27^6*29^8=odd*odd*odd*odd=odd$$ so $$x$$ is an odd number. The only way it to be a multiple of $$26^n$$ (even number in integer power) is when $$n=0$$, in this case $$26^n=26^0=1$$ and 1 is a factor of every integer. Thus $$n=0$$ --> $$n^{26}-26^n=0^{26}-26^0=0-1=-1$$. Must know for the GMAT: $$a^0=1$$, for $$a\neq{0}$$ - any nonzero number to the power of 0 is 1. Important note: the case of 0^0 is not tested on the GMAT.

hi man

26^n is a multiple of an odd number, this is only possible when n = 0, but why?, yes it can be equal to zero, but "n" can also be a non-negative irrational number...

Is this because the base to which the power "n" is raised is even or anything else ...?

Math Expert
Joined: 02 Sep 2009
Posts: 43785
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

28 Sep 2017, 02:34
gmatcracker2017 wrote:
Bunuel wrote:
5. If $$x=23^2*25^4*27^6*29^8$$ and is a multiple of $$26^n$$,where $$n$$ is a non-negative integer, then what is the value of $$n^{26}-26^n$$?
A. -26
B. -25
C. -1
D. 0
E. 1

$$23^2*25^4*27^6*29^8=odd*odd*odd*odd=odd$$ so $$x$$ is an odd number. The only way it to be a multiple of $$26^n$$ (even number in integer power) is when $$n=0$$, in this case $$26^n=26^0=1$$ and 1 is a factor of every integer. Thus $$n=0$$ --> $$n^{26}-26^n=0^{26}-26^0=0-1=-1$$. Must know for the GMAT: $$a^0=1$$, for $$a\neq{0}$$ - any nonzero number to the power of 0 is 1. Important note: the case of 0^0 is not tested on the GMAT.

hi man

26^n is a multiple of an odd number, this is only possible when n = 0, but why?, yes it can be equal to zero, but "n" can also be a non-negative irrational number...

Check the highlighted part.
_________________
Manager
Status: love the club...
Joined: 24 Mar 2015
Posts: 247
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

28 Sep 2017, 02:42
Bunuel wrote:
gmatcracker2017 wrote:
Bunuel wrote:
5. If $$x=23^2*25^4*27^6*29^8$$ and is a multiple of $$26^n$$,where $$n$$ is a non-negative integer, then what is the value of $$n^{26}-26^n$$?
A. -26
B. -25
C. -1
D. 0
E. 1

$$23^2*25^4*27^6*29^8=odd*odd*odd*odd=odd$$ so $$x$$ is an odd number. The only way it to be a multiple of $$26^n$$ (even number in integer power) is when $$n=0$$, in this case $$26^n=26^0=1$$ and 1 is a factor of every integer. Thus $$n=0$$ --> $$n^{26}-26^n=0^{26}-26^0=0-1=-1$$. Must know for the GMAT: $$a^0=1$$, for $$a\neq{0}$$ - any nonzero number to the power of 0 is 1. Important note: the case of 0^0 is not tested on the GMAT.

hi man

26^n is a multiple of an odd number, this is only possible when n = 0, but why?, yes it can be equal to zero, but "n" can also be a non-negative irrational number...

Check the highlighted part.

oh! man
I got it

thanks a lot man
Intern
Joined: 03 Sep 2017
Posts: 12
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

01 Oct 2017, 16:16
Bunuel wrote:
SOLUTIONS:

1. What is the value of $$\sqrt{25+10\sqrt{6}}+\sqrt{25-10\sqrt{6}}$$?
A. $$2\sqrt{5}$$
B. $$\sqrt{55}$$
C. $$2\sqrt{15}$$
D. 50
E. 60

Square the given expression to get rid of the roots, though don't forget to un-square the value you get at the end to balance this operation and obtain the right answer:

Must know fro the GMAT: $$(x+y)^2=x^2+2xy+y^2$$ (while $$(x-y)^2=x^2-2xy+y^2$$).

So we get: $$(\sqrt{25+10\sqrt{6}}+\sqrt{25-10\sqrt{6}})^2=(\sqrt{25+10\sqrt{6}})^2+2(\sqrt{25+10\sqrt{6}})(\sqrt{25-10\sqrt{6}})+(\sqrt{25-10\sqrt{6}})^2=$$
$$=(25+10\sqrt{6})+2(\sqrt{25+10\sqrt{6}})(\sqrt{25-10\sqrt{6}})+(25-10\sqrt{6})$$.

Note that sum of the first and the third terms simplifies to $$(25+10\sqrt{6})+(25-10\sqrt{6})=50$$, so we have $$50+2(\sqrt{25+10\sqrt{6}})(\sqrt{25-10\sqrt{6}})$$ --> $$50+2(\sqrt{25+10\sqrt{6}})(\sqrt{25-10\sqrt{6}})=50+2\sqrt{(25+10\sqrt{6})(25-10\sqrt{6})}$$.

Also must know for the GMAT: $$(x+y)(x-y)=x^2-y^2$$, thus $$50+2\sqrt{(25+10\sqrt{6})(25-10\sqrt{6})}=50+2\sqrt{25^2-(10\sqrt{6})^2)}=50+2\sqrt{625-600}=50+2\sqrt{25}=60$$.

Recall that we should un-square this value to get the right the answer: $$\sqrt{60}=2\sqrt{15}$$.

Hi Bunuel

I found it easier to do the ''math''
6^1/2 = 2,45 (just know by heart)

So first term would be 25+10*2,45 = a little bit more than 49, so the square root is 7,something small
Second term would be 25-10*2,45 = almost 1, just considered 1, and than the square root = 1

little bit more than 7 - 1 -> answer should be something close to 6

A: 2 * square root(5) = 2*2,43 , not close to 6
B: Sroot(55) = bigger than 7
C: Looks good
D: No way
E: No way

Choice is C.
Manager
Joined: 30 Oct 2016
Posts: 62
Schools: HBS '20, Kellogg '20
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

08 Nov 2017, 13:46
Bunuel wrote:
2. What is the units digit of $$(17^3)^4-1973^{3^2}$$?
A. 0
B. 2
C. 4
D. 6
E. 8

Must know for the GMAT:
I. The units digit of $$(abc)^n$$ is the same as that of $$c^n$$, which means that the units digit of $$(17^3)^4$$ is that same as that of $$(7^3)^4$$ and the units digit of $$1973^{3^2}$$ is that same as that of $$3^{3^2}$$.

II. If exponentiation is indicated by stacked symbols, the rule is to work from the top down, thus:
$$a^m^n=a^{(m^n)}$$ and not $$(a^m)^n$$, which on the other hand equals to $$a^{mn}$$.

So:
$$(a^m)^n=a^{mn}$$;

$$a^m^n=a^{(m^n)}$$.

Thus, $$(7^3)^4=7^{(3*4)}=7^{12}$$ and $$3^{3^2}=3^{(3^2)}=3^9$$.

III. The units digit of integers in positive integer power repeats in specific pattern (cyclicity): The units digit of 7 and 3 in positive integer power repeats in patterns of 4:

1. 7^1=7 (last digit is 7)
2. 7^2=9 (last digit is 9)
3. 7^3=3 (last digit is 3)
4. 7^4=1 (last digit is 1)

5. 7^5=7 (last digit is 7 again!)
...

1. 3^1=3 (last digit is 3)
2. 3^2=9 (last digit is 9)
3. 3^3=27 (last digit is 7)
4. 3^4=81 (last digit is 1)

5. 3^5=243 (last digit is 3 again!)
...

Thus th units digit of $$7^{12}$$ will be 1 (4th in pattern, as 12 is a multiple of cyclicty number 4) and the units digit of $$3^9$$ will be 3 (first in pattern, as 9=4*2+1).

So, we have that the units digit of $$(17^3)^4=17^{12}$$ is 1 and the units digit of $$1973^3^2=1973^9$$ is 3. Also notice that the second number is much larger then the first one, thus their difference will be negative, something like 11-13=-2, which gives the final answer that the units digit of $$(17^3)^4-1973^{3^2}$$ is 2.

I don't understand the last step why is it not 11-3? which =7?
Math Expert
Joined: 02 Sep 2009
Posts: 43785
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

08 Nov 2017, 20:20
arcticTO wrote:
Bunuel wrote:
2. What is the units digit of $$(17^3)^4-1973^{3^2}$$?
A. 0
B. 2
C. 4
D. 6
E. 8

Must know for the GMAT:
I. The units digit of $$(abc)^n$$ is the same as that of $$c^n$$, which means that the units digit of $$(17^3)^4$$ is that same as that of $$(7^3)^4$$ and the units digit of $$1973^{3^2}$$ is that same as that of $$3^{3^2}$$.

II. If exponentiation is indicated by stacked symbols, the rule is to work from the top down, thus:
$$a^m^n=a^{(m^n)}$$ and not $$(a^m)^n$$, which on the other hand equals to $$a^{mn}$$.

So:
$$(a^m)^n=a^{mn}$$;

$$a^m^n=a^{(m^n)}$$.

Thus, $$(7^3)^4=7^{(3*4)}=7^{12}$$ and $$3^{3^2}=3^{(3^2)}=3^9$$.

III. The units digit of integers in positive integer power repeats in specific pattern (cyclicity): The units digit of 7 and 3 in positive integer power repeats in patterns of 4:

1. 7^1=7 (last digit is 7)
2. 7^2=9 (last digit is 9)
3. 7^3=3 (last digit is 3)
4. 7^4=1 (last digit is 1)

5. 7^5=7 (last digit is 7 again!)
...

1. 3^1=3 (last digit is 3)
2. 3^2=9 (last digit is 9)
3. 3^3=27 (last digit is 7)
4. 3^4=81 (last digit is 1)

5. 3^5=243 (last digit is 3 again!)
...

Thus th units digit of $$7^{12}$$ will be 1 (4th in pattern, as 12 is a multiple of cyclicty number 4) and the units digit of $$3^9$$ will be 3 (first in pattern, as 9=4*2+1).

So, we have that the units digit of $$(17^3)^4=17^{12}$$ is 1 and the units digit of $$1973^3^2=1973^9$$ is 3. Also notice that the second number is much larger then the first one, thus their difference will be negative, something like 11-13=-2, which gives the final answer that the units digit of $$(17^3)^4-1973^{3^2}$$ is 2.

I don't understand the last step why is it not 11-3? which =7?

_________________
Intern
Joined: 02 Dec 2017
Posts: 2
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

14 Feb 2018, 08:40
Bunuel wrote:
3. If $$5^{10x}=4,900$$ and $$2^{\sqrt{y}}=25$$ what is the value of $$\frac{(5^{(x-1)})^5}{4^{-\sqrt{y}}}$$?
A. 14/5
B. 5
C. 28/5
D. 13
E. 14

First thing one should notice here is that $$x$$ and $$y$$ must be some irrational numbers (4,900 has other primes then 5 in its prime factorization and 25 doesn't have 2 as a prime at all), so we should manipulate with given expressions rather than to solve for x and y.

$$5^{10x}=4,900$$ --> $$(5^{5x})^2=70^2$$ --> $$5^{5x}=70$$

$$\frac{(5^{(x-1)})^5}{4^{-\sqrt{y}}}=5^{(5x-5)}*4^{\sqrt{y}}=5^{5x}*5^{-5}*(2^{\sqrt{y}})^2=70*5^{-5}*25^2=70*5^{-5}*5^4=70*5^{-1}=\frac{70}{5}=14$$

Hey there, just one remark. Why could 4sqrt/y not become by 2 x 2 sqrt/y? why is it definitely (2 sqrt/y)^2 ?

thanks
Math Expert
Joined: 02 Sep 2009
Posts: 43785
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

14 Feb 2018, 08:47
1
KUDOS
Expert's post
gmatmo wrote:
Bunuel wrote:
3. If $$5^{10x}=4,900$$ and $$2^{\sqrt{y}}=25$$ what is the value of $$\frac{(5^{(x-1)})^5}{4^{-\sqrt{y}}}$$?
A. 14/5
B. 5
C. 28/5
D. 13
E. 14

First thing one should notice here is that $$x$$ and $$y$$ must be some irrational numbers (4,900 has other primes then 5 in its prime factorization and 25 doesn't have 2 as a prime at all), so we should manipulate with given expressions rather than to solve for x and y.

$$5^{10x}=4,900$$ --> $$(5^{5x})^2=70^2$$ --> $$5^{5x}=70$$

$$\frac{(5^{(x-1)})^5}{4^{-\sqrt{y}}}=5^{(5x-5)}*4^{\sqrt{y}}=5^{5x}*5^{-5}*(2^{\sqrt{y}})^2=70*5^{-5}*25^2=70*5^{-5}*5^4=70*5^{-1}=\frac{70}{5}=14$$

Hey there, just one remark. Why could 4sqrt/y not become by 2 x 2 sqrt/y? why is it definitely (2 sqrt/y)^2 ?

thanks

You can write this in several ways:

$$4^{\sqrt{y}}=(2*2)^{\sqrt{y}}=2^{\sqrt{y}}*2^{\sqrt{y}}=2^{\sqrt{y}+\sqrt{y}}=2^{2\sqrt{y}}=(2^{\sqrt{y}})^2$$

P.S. Please read the following post. Writing Mathematical Formulas on the Forum: https://gmatclub.com/forum/rules-for-po ... l#p1096628
_________________
Re: NEW!!! Tough and tricky exponents and roots questions   [#permalink] 14 Feb 2018, 08:47

Go to page   Previous    1   2   3   4   5   6   7   8   9   10   [ 188 posts ]

Display posts from previous: Sort by