It is currently 20 Nov 2017, 07:08

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# NEW!!! Tough and tricky exponents and roots questions

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 42264

Kudos [?]: 132772 [53], given: 12372

NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 03:03
53
KUDOS
Expert's post
296
This post was
BOOKMARKED
Exponents and roots problems are very common on the GMAT. So, it's extremely important to know how to manipulate them, how to factor out, take roots, multiply, divide, etc. Below are 11 problems to test your skills. Please post your thought process/solutions along with the answers.

I'll post OA's with detailed solutions tomorrow. Good luck.

1. What is the value of $$\sqrt{25+10\sqrt{6}}+\sqrt{25-10\sqrt{6}}$$?
A. $$2\sqrt{5}$$
B. $$\sqrt{55}$$
C. $$2\sqrt{15}$$
D. 50
E. 60

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029216

2. What is the units digit of $$(17^3)^4-1973^{3^2}$$?
A. 0
B. 2
C. 4
D. 6
E. 8

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029219

3. If $$5^{10x}=4,900$$ and $$2^{\sqrt{y}}=25$$ what is the value of $$\frac{(5^{(x-1)})^5}{4^{-\sqrt{y}}}$$?
A. 14/5
B. 5
C. 28/5
D. 13
E. 14

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029221

4. What is the value of $$5+4*5+4*5^2+4*5^3+4*5^4+4*5^5$$?
A. 5^6
B. 5^7
C. 5^8
D. 5^9
E. 5^10

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029222

5. If $$x=23^2*25^4*27^6*29^8$$ and is a multiple of $$26^n$$, where $$n$$ is a non-negative integer, then what is the value of $$n^{26}-26^n$$?
A. -26
B. -25
C. -1
D. 0
E. 1

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029223

6. If $$x=\sqrt[5]{-37}$$ then which of the following must be true?
A. $$\sqrt{-x}>2$$
B. x>-2
C. x^2<4
D. x^3<-8
E. x^4>32

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029224

7. If $$x=\sqrt{10}+\sqrt[3]{9}+\sqrt[4]{8}+\sqrt[5]{7}+\sqrt[6]{6}+\sqrt[7]{5}+\sqrt[8]{4}+\sqrt[9]{3}+\sqrt[10]{2}$$, then which of the following must be true:
A. x<6
B. 6<x<8
C. 8<x<10
D. 10<x<12
E. x>12

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029227

8. If $$x$$ is a positive number and equals to $$\sqrt{6+{\sqrt{6+\sqrt{6+\sqrt{6+...}}}}}$$, where the given expression extends to an infinite number of roots, then what is the value of x?
A. $$\sqrt{6}$$
B. 3
C. $$1+\sqrt{6}$$
D. $$2\sqrt{3}$$
E. 6

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029228

9. If $$x$$ is a positive integer then the value of $$\frac{22^{22x}-22^{2x}}{11^{11x}-11^x}$$ is closest to which of the following?
A. $$2^{11x}$$
B. $$11^{11x}$$
C. $$22^{11x}$$
D. $$2^{22x}*11^{11x}$$
E. $$2^{22x}*11^{22x}$$

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029229

10. Given that $$5x=125-3y+z$$ and $$\sqrt{5x}-5-\sqrt{z-3y}=0$$, then what is the value of $$\sqrt{\frac{45(z-3y)}{x}}$$?
A. 5
B. 10
C. 15
D. 20
E. Can not be determined

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029231

11. If $$x>0$$, $$x^2=2^{64}$$ and $$x^x=2^y$$ then what is the value of $$y$$?
A. 2
B. 2^(11)
C. 2^(32)
D. 2^(37)
E. 2^(64)

Solution: tough-and-tricky-exponents-and-roots-questions-125956-40.html#p1029232
_________________

Kudos [?]: 132772 [53], given: 12372

Math Expert
Joined: 02 Sep 2009
Posts: 42264

Kudos [?]: 132772 [3], given: 12372

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 03:10
3
KUDOS
Expert's post
2
This post was
BOOKMARKED
THEORY TO TACKLE THE PROBLEMS ABOVE:
For more on number theory check the Number Theory Chapter of Math Book: math-number-theory-88376.html

EXPONENTS

Exponents are a "shortcut" method of showing a number that was multiplied by itself several times. For instance, number $$a$$ multiplied $$n$$ times can be written as $$a^n$$, where $$a$$ represents the base, the number that is multiplied by itself $$n$$ times and $$n$$ represents the exponent. The exponent indicates how many times to multiple the base, $$a$$, by itself.

Exponents one and zero:
$$a^0=1$$ Any nonzero number to the power of 0 is 1.
For example: $$5^0=1$$ and $$(-3)^0=1$$
• Note: the case of 0^0 is not tested on the GMAT.

$$a^1=a$$ Any number to the power 1 is itself.

Powers of zero:
If the exponent is positive, the power of zero is zero: $$0^n = 0$$, where $$n > 0$$.

If the exponent is negative, the power of zero ($$0^n$$, where $$n < 0$$) is undefined, because division by zero is implied.

Powers of one:
$$1^n=1$$ The integer powers of one are one.

Negative powers:
$$a^{-n}=\frac{1}{a^n}$$

Powers of minus one:
If n is an even integer, then $$(-1)^n=1$$.

If n is an odd integer, then $$(-1)^n =-1$$.

Operations involving the same exponents:
Keep the exponent, multiply or divide the bases
$$a^n*b^n=(ab)^n$$

$$\frac{a^n}{b^n}=(\frac{a}{b})^n$$

$$(a^m)^n=a^{mn}$$

$$a^m^n=a^{(m^n)}$$ and not $$(a^m)^n$$ (if exponentiation is indicated by stacked symbols, the rule is to work from the top down)

Operations involving the same bases:
Keep the base, add or subtract the exponent (add for multiplication, subtract for division)
$$a^n*a^m=a^{n+m}$$

$$\frac{a^n}{a^m}=a^{n-m}$$

Fraction as power:
$$a^{\frac{1}{n}}=\sqrt[n]{a}$$

$$a^{\frac{m}{n}}=\sqrt[n]{a^m}$$

ROOTS

Roots (or radicals) are the "opposite" operation of applying exponents. For instance x^2=16 and square root of 16=4.

General rules:
• $$\sqrt{x}\sqrt{y}=\sqrt{xy}$$ and $$\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}$$.

• $$(\sqrt{x})^n=\sqrt{x^n}$$

• $$x^{\frac{1}{n}}=\sqrt[n]{x}$$

• $$x^{\frac{n}{m}}=\sqrt[m]{x^n}$$

• $${\sqrt{a}}+{\sqrt{b}}\neq{\sqrt{a+b}}$$

• $$\sqrt{x^2}=|x|$$, when $$x\leq{0}$$, then $$\sqrt{x^2}=-x$$ and when $$x\geq{0}$$, then $$\sqrt{x^2}=x$$

• When the GMAT provides the square root sign for an even root, such as $$\sqrt{x}$$ or $$\sqrt[4]{x}$$, then the only accepted answer is the positive root.

That is, $$\sqrt{25}=5$$, NOT +5 or -5. In contrast, the equation $$x^2=25$$ has TWO solutions, +5 and -5. Even roots have only a positive value on the GMAT.

• Odd roots will have the same sign as the base of the root. For example, $$\sqrt[3]{125} =5$$ and $$\sqrt[3]{-64} =-4$$.
_________________

Kudos [?]: 132772 [3], given: 12372

Senior Manager
Joined: 23 Oct 2010
Posts: 381

Kudos [?]: 403 [1], given: 73

Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 03:43
1
KUDOS
1. What is the value of \sqrt{25+10\sqrt{6}}+\sqrt{25-10\sqrt{6}}?
A. 2\sqrt{5}
B. \sqrt{55}
C. 2\sqrt{15}
D. 50
E. 60

( \sqrt{25+10\sqrt{6}}+\sqrt{25-10\sqrt{6}})^2 =60

\sqrt{60}=2\sqrt{15}
ans is
[Reveal] Spoiler:
C

_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

Kudos [?]: 403 [1], given: 73

Senior Manager
Joined: 23 Oct 2010
Posts: 381

Kudos [?]: 403 [0], given: 73

Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 04:04
2. What is the units digit of (17^3)^4-1973^{3^2}?
A. 0
B. 2
C. 4
D. 6
E. 8

7^12-3^9
11-3=8

ANS IS E
_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

Last edited by LalaB on 12 Jan 2012, 12:26, edited 1 time in total.

Kudos [?]: 403 [0], given: 73

Senior Manager
Joined: 23 Oct 2010
Posts: 381

Kudos [?]: 403 [0], given: 73

Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 04:34
imho 3 .
[Reveal] Spoiler:
E
?

If 5^{10x}=4,900 and 2^{\sqrt{y}}=25 what is the value of \frac{5^{(x-1)^5}}{4^{-\sqrt{y}}?
A. 14/5
B. 5
C. 28/5
D. 13
E. 14
_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

Kudos [?]: 403 [0], given: 73

Senior Manager
Joined: 13 May 2011
Posts: 294

Kudos [?]: 292 [0], given: 11

WE 1: IT 1 Yr
WE 2: Supply Chain 5 Yrs
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 04:56
LalaB wrote:
2. What is the units digit of (17^3)^4-1973^{3^2}?
A. 0
B. 2
C. 4
D. 6
E. 8

7^12-3^9
1-1=0

ANS IS A

I get 2. for 1st term 1 and for the 2nd term 9. 1st term - 2nd term= unit digit=2

Kudos [?]: 292 [0], given: 11

Senior Manager
Joined: 13 May 2011
Posts: 294

Kudos [?]: 292 [1], given: 11

WE 1: IT 1 Yr
WE 2: Supply Chain 5 Yrs
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 05:06
1
KUDOS
Q1= root (a+b)^2 [say: \sqrt{25+10\sqrt{6}}= a and \sqrt{25-10\sqrt{6}}= b ]
= root (50+2root(25))
= root(60)
= 2root(15)

Kudos [?]: 292 [1], given: 11

Senior Manager
Joined: 13 May 2011
Posts: 294

Kudos [?]: 292 [1], given: 11

WE 1: IT 1 Yr
WE 2: Supply Chain 5 Yrs
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 05:19
1
KUDOS
Edited
What is the value of 5+4*5+4*5^2+4*5^3+4*5^4+4*5^5?
= 5+4*5[1+5+5^2+5^3+5^4]
=5+20*781
=15625
=625*25=5^6

Last edited by BDSunDevil on 12 Jan 2012, 05:32, edited 1 time in total.

Kudos [?]: 292 [1], given: 11

Senior Manager
Joined: 23 Oct 2010
Posts: 381

Kudos [?]: 403 [1], given: 73

Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 05:23
1
KUDOS
4. What is the value of 5+4*5+4*5^2+4*5^3+4*5^4+4*5^5?
A. 5^6
B. 5^7
C. 5^8
D. 5^9
E. 5^10

[Reveal] Spoiler:
A

5+4*5+4*5^2+4*5^3+4*5^4+4*5^5=5*5+4*5^2(1+5)+4*5^4(1+5)=
5^2+4*5^2*6+4*5^4*6=5^4+4*5^4*6=5^4*5^2=5^6
_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

Kudos [?]: 403 [1], given: 73

Manager
Joined: 06 Oct 2011
Posts: 165

Kudos [?]: 65 [0], given: 10

Schools: Wharton '15, CBS '15
GMAT Date: 06-30-2012
GPA: 3.7
WE: Accounting (Insurance)
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 08:19
Can you explain 1? some of the code came out messed up and its difficult to read
_________________

Reward wisdom with kudos

Kudos [?]: 65 [0], given: 10

Senior Manager
Joined: 13 May 2011
Posts: 294

Kudos [?]: 292 [0], given: 11

WE 1: IT 1 Yr
WE 2: Supply Chain 5 Yrs
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 09:45
for 1:
I just read it as (a + b)
i. e = \sqrt{(a+b)^2}
then substituting the value for a and b
a= \sqrt{(25+10[square_root]6)}[/square_root] and b = a= \sqrt{(25-10[square_root]6)}[/square_root]

Kudos [?]: 292 [0], given: 11

Senior Manager
Joined: 23 Oct 2010
Posts: 381

Kudos [?]: 403 [1], given: 73

Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 09:49
1
KUDOS
wallstreetbarbie wrote:
Can you explain 1? some of the code came out messed up and its difficult to read

\sqrt{25+10\sqrt{6}}+\sqrt{25-10\sqrt{6}} )

1st raise it to the 2nd power (in a simple form u have (a+b)^2)
(\sqrt{25+ 10[square_root]6}[/square_root]+\sqrt{25- 10[square_root]6}[/square_root] )^2 =

=((\sqrt{25+ 10[square_root]6}[/square_root])^2+ 2((\sqrt{25+ 10[square_root]6}[/square_root])*(\sqrt{25- 10[square_root]6}[/square_root] ) +(\sqrt{25- 10[square_root]6}[/square_root] )^2 (in a simple form u have got (a^2+2ab+b^2)

=25+ 10\sqrt{6}[/square_root]+25-10\sqrt{6}[/square_root] +2((\sqrt{25+ 10[square_root]6}[/square_root])*(\sqrt{25- 10[square_root]6}[/square_root]))

=50+2*\sqrt{625-6*100}=50+2*5=60

\sqrt{60}=2\sqrt{15}

hope I could be helpful
_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

Kudos [?]: 403 [1], given: 73

Senior Manager
Joined: 30 Aug 2009
Posts: 283

Kudos [?]: 191 [2], given: 5

Location: India
Concentration: General Management
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 10:10
2
KUDOS
8- B
the entire expression $$\sqrt{6+{\sqrt{6+\sqrt{6+\sqrt{6+...}}}}}$$
we can write as
x = $$\sqrt{6+x}$$ ----as its an infinite series

so $$x^2$$ = 6+x
$$x^2$$ -x - 6 = 0

(x-3)(x+2) =0

as x is +ve x=3

Kudos [?]: 191 [2], given: 5

Senior Manager
Joined: 13 May 2011
Posts: 294

Kudos [?]: 292 [1], given: 11

WE 1: IT 1 Yr
WE 2: Supply Chain 5 Yrs
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 10:12
1
KUDOS
Q 5:

2^n*13^n * K= 23^2*5^8*3^18*29^8 [ after prime factorization]
value of n has to be 0 for 2^n*13^n to be 1
therefore, n^2*6 -26^n
=0-1
=-1
(??)

Kudos [?]: 292 [1], given: 11

Senior Manager
Joined: 13 May 2011
Posts: 294

Kudos [?]: 292 [1], given: 11

WE 1: IT 1 Yr
WE 2: Supply Chain 5 Yrs
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 10:44
1
KUDOS
Q 10. from equation 1 and 2: we can solve for x= 45
we also know: z-3y= 5x - 125

substituting these: we get the value= 10

Kudos [?]: 292 [1], given: 11

Senior Manager
Joined: 23 Oct 2010
Posts: 381

Kudos [?]: 403 [1], given: 73

Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 11:13
1
KUDOS
5. If x=23^2*25^4*27^6*29^8 and is a multiple of 26^n, where n is a non-negative integer, then what is the value of n^26-26^n?
A. -26
B. -25
C. -1
D. 0
E. 1

23^2*25^4*27^6*29^8/26^n= 23^2*25^4*27^6*29^8/(2*13)^n from this point it is obvious, that n =0 (since both 2 and 13 are primes and none of the numbers of numerator can be divisible by 2 and 13)

n=0 then n^26-26^n=0^26-26^0=0-1=-1

answ is C
_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

Kudos [?]: 403 [1], given: 73

Senior Manager
Joined: 23 Oct 2010
Posts: 381

Kudos [?]: 403 [1], given: 73

Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 11:23
1
KUDOS
6. If x=\sqrt[5]{-37} then which of the following must be true?
A. \sqrt{-x}>2
B. x>-2
C. x^2<4
D. x^3<-8
E. x^4>32

hm, have doubts in my solution...

x=\sqrt[5]{-37}

37 is near 32 . 32 =2^5 it means that -3<x<-2

so D is correct
_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

Kudos [?]: 403 [1], given: 73

Senior Manager
Joined: 23 Oct 2010
Posts: 381

Kudos [?]: 403 [0], given: 73

Location: Azerbaijan
Concentration: Finance
Schools: HEC '15 (A)
GMAT 1: 690 Q47 V38
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 11:48
11. If x>0, x^2=2^{64} and x^x=2^y then what is the value of y?
A. 2
B. 2^(11)
C. 2^(32)
D. 2^(37)
E. 2^(64)

x^2=2^{64}
x^2=(2^{32})^2 so x =2^32 from now I dont know ...either C, or E is the answ. I would choose C

@Bunuel, when r u going to post answers? just curious
_________________

Happy are those who dream dreams and are ready to pay the price to make them come true

I am still on all gmat forums. msg me if you want to ask me smth

Kudos [?]: 403 [0], given: 73

Intern
Joined: 12 Oct 2011
Posts: 19

Kudos [?]: 22 [2], given: 5

Location: United States
GMAT 1: 720 Q50 V36
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 12:18
2
KUDOS
1. What is the value of \sqrt{(25+10√6)} + \sqrt{(25-10√6)}?
A. 2√5
B. √55
C. 2√15
D. 50
E. 60

N = √(25+10√6) + √(25-10√6)
N^2 = 25+10√6 + 25-10√6 + 2\sqrt{625-600}
N^2 = 50 + 2*5 = 60
N = √60 = 2√15

Option
[Reveal] Spoiler:
C

Kudos [?]: 22 [2], given: 5

Intern
Joined: 12 Oct 2011
Posts: 19

Kudos [?]: 22 [0], given: 5

Location: United States
GMAT 1: 720 Q50 V36
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

### Show Tags

12 Jan 2012, 12:22
1
This post was
BOOKMARKED
2. What is the units digit of (17^3)^4-1973^{3^2}?
A. 0
B. 2
C. 4
D. 6
E. 8

Units digit for 17^3 = 3
Units digit for (17^3)^4 = 3^4 = 1
Units digit for 1973^9 = 3
Units digit for xxx1 - xxxx3 = 8

Option
[Reveal] Spoiler:
E

Kudos [?]: 22 [0], given: 5

Re: NEW!!! Tough and tricky exponents and roots questions   [#permalink] 12 Jan 2012, 12:22

Go to page    1   2   3   4   5   6   7   8   9   10    Next  [ 186 posts ]

Display posts from previous: Sort by

# NEW!!! Tough and tricky exponents and roots questions

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.