It is currently 21 Oct 2017, 18:25

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

NEW!!! Tough and tricky exponents and roots questions

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
20 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41892

Kudos [?]: 129172 [20], given: 12194

NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 12 Jan 2012, 03:50
20
This post received
KUDOS
Expert's post
130
This post was
BOOKMARKED
Exponents and roots problems are very common on the GMAT. So, it's extremely important to know how to manipulate them, how to factor out, take roots, multiply, divide, etc. Below are 11 problems to test your skills. Please post your thought process/solutions along with the answers.

I'll post OA's with detailed solutions tomorrow. Good luck.


1. If \(357^x*117^y=a\), where \(x\) and \(y\) are positive integers, what is the units digit of \(a\)?
(1) \(100<y^2<x^2<169\)
(2) \(x^2-y^2=23\)

Solution: tough-and-tricky-exponents-and-roots-questions-125967.html#p1029239

2. If x, y, and z are positive integers and \(xyz=2,700\). Is \(\sqrt{x}\) an integer?
(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube.
(2) \(\sqrt{z}\) is not an integer.

Solution: tough-and-tricky-exponents-and-roots-questions-125967.html#p1029240

3. If \(x>y>0\) then what is the value of \(\frac{\sqrt{2x}+\sqrt{2y}}{x-y}\)?
(1) \(x+y=4+2\sqrt{xy}\)
(2) \(x-y=9\)

Solution: tough-and-tricky-exponents-and-roots-questions-125967.html#p1029241

4. If \(xyz\neq{0}\) is \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\)?
(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\)
(2) \(y^3>\frac{1}{z{^4}}\)

Solution: tough-and-tricky-exponents-and-roots-questions-125967.html#p1029242

5. If \(x\) and \(y\) are negative integers, then what is the value of \(xy\)?
(1) \(x^y=\frac{1}{81}\)
(2) \(y^x=-\frac{1}{64}\)

Solution: tough-and-tricky-exponents-and-roots-questions-125967.html#p1029243

6. If \(x>{0}\) then what is the value of \(y^x\)?
(1) \(\frac{4^{(x+y)^2}}{4^{(x-y)^2}}=128^{xy}\)
(2) \(x\neq{1}\) and \(x^y=1\)

Solution: tough-and-tricky-exponents-and-roots-questions-125967.html#p1029244

7. If \(x\) is a positive integer is \(\sqrt{x}\) an integer?
(1) \(\sqrt{7*x}\) is an integer
(2) \(\sqrt{9*x}\) is not an integer

Solution: tough-and-tricky-exponents-and-roots-questions-125967-20.html#p1029245

8. What is the value of \(x^2+y^3\)?
(1) \(x^6+y^9=0\)
(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\)

Solution: tough-and-tricky-exponents-and-roots-questions-125967-20.html#p1029246

9. If \(x\), \(y\) and \(z\) are non-zero numbers, what is the value of \(\frac{x^3+y^3+z^3}{xyz}\)?
(1) \(xyz=-6\)
(2) \(x+y+z=0\)

Solution: tough-and-tricky-exponents-and-roots-questions-125967-20.html#p1029247

10. If \(x\) and \(y\) are non-negative integers and \(x+y>0\) is \((x+y)^{xy}\) an even integer?
(1) \(2^{x-y}=\sqrt[(x+y)]{16}\)
(2) \(2^x+3^y=\sqrt[(x+y)]{25}\)

Solution: tough-and-tricky-exponents-and-roots-questions-125967-20.html#p1029248

11. What is the value of \(xy\)?
(1) \(3^x*5^y=75\)
(2) \(3^{(x-1)(y-2)}=1\)

Solution: tough-and-tricky-exponents-and-roots-questions-125967-20.html#p1029249
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 129172 [20], given: 12194

Intern
Intern
avatar
Joined: 21 May 2013
Posts: 10

Kudos [?]: 2 [0], given: 7

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 01 Jul 2014, 10:47
Bunuel wrote:
gkashyap wrote:
Bunuel wrote:
1. If \(357^x*117^y=a\), where \(x\) and \(y\) are positive integers, what is the units digit of \(a\)?
(1) \(100<y^2<x^2<169\)
(2) \(x^2-y^2=23\)

(1) \(100<y^2<x^2<169\) --> since both \(x\) and \(y\) are positive integers then \(x^2\) and \(y^2\) are perfect squares --> there are only two perfect squares in the given range 121=11^2 and 144=12^2 --> \(y=11\) and \(x=12\). Sufficient.(As cyclicity of units digit of \(7\) in integer power is \(4\), therefore the units digit of \(7^{23}\) is the same as the units digit of \(7^3\), so 3).

(2) \(x^2-y^2=23\) --> \((x-y)(x+y)=23=prime\) --> since both \(x\) and \(y\) are positive integers then: \(x-y=1\) and \(x+y=23\) --> \(y=11\) and \(x=12\). Sufficient.

Answer: D.


Hi Bunuel,

Could you please provide me some explanation for (2) when you say " since both x and y are positive integers then: x-y=1 and x+y=23 --> y=11 and x=12"?

How can we assume that x - y = 1? It could have been any two numbers. Is there a theory that if difference of square of two numbers, then they are consecutive? Could you please provide some reference?

Thanks for the help.

Regards,
Gajendra


\((x-y)(x+y)=23=prime\). 23 is a prime number, so it can be broken into the product of two positive multiples only in one way 23=1*23. Now, since x and y are positive integers, then x-y<x+y, thus x-y=1 and x+y=23.

Does this make sense?


Yes, it is clear now. Thanks !! :)

Kudos [?]: 2 [0], given: 7

Intern
Intern
avatar
Joined: 05 Apr 2014
Posts: 15

Kudos [?]: 4 [0], given: 46

GMAT 1: 610 Q49 V25
GMAT ToolKit User Reviews Badge
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 15 Jul 2014, 11:16
Bunuel wrote:
2. If x, y, and z are positive integers and \(xyz=2,700\). Is \(\sqrt{x}\) and integer?
(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube.
(2) \(\sqrt{z}\) is not an integer.

Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.

Make prime factorization of 2,700 --> \(xyz=2^2*3^3*5^2\).

(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube --> if \(y\) is either \(2^2\) or \(2^2*5^2\) and \(z=3^3=odd \ perfect \ square\) then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.

(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.

(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) --> \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.

Answer: C.


Hi Bunuel,
Please explain why statement 2 is insufficient. If z^(1/2) is not an integer then z is not a perfect square, so z can be 27, 27*4, 27*25 or 27*25*4. In all these cases the left-out factors are perfect squares. Therefore x must be a perfect square (4,25,100 or 1)
_________________

If anything above makes any sense to you, please let me and others know by hitting the "+1 KUDOS" button

Kudos [?]: 4 [0], given: 46

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41892

Kudos [?]: 129172 [1], given: 12194

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 15 Jul 2014, 11:42
1
This post received
KUDOS
Expert's post
shuvabrata88 wrote:
Bunuel wrote:
2. If x, y, and z are positive integers and \(xyz=2,700\). Is \(\sqrt{x}\) and integer?
(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube.
(2) \(\sqrt{z}\) is not an integer.

Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.

Make prime factorization of 2,700 --> \(xyz=2^2*3^3*5^2\).

(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube --> if \(y\) is either \(2^2\) or \(2^2*5^2\) and \(z=3^3=odd \ perfect \ square\) then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.

(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.

(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) --> \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.

Answer: C.


Hi Bunuel,
Please explain why statement 2 is insufficient. If z^(1/2) is not an integer then z is not a perfect square, so z can be 27, 27*4, 27*25 or 27*25*4. In all these cases the left-out factors are perfect squares. Therefore x must be a perfect square (4,25,100 or 1)


What about y in this cases? Also, there are other cases possible. For example, z=3, y=2*3^2*5^2 and x=2.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 129172 [1], given: 12194

Current Student
avatar
Joined: 17 Oct 2013
Posts: 49

Kudos [?]: 35 [0], given: 549

Location: India
Concentration: Strategy, Statistics
Schools: ISB '17 (A)
GMAT 1: 730 Q49 V40
WE: Analyst (Computer Software)
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 23 Jul 2014, 06:39
Bunuel wrote:
1. If \(357^x*117^y=a\), where \(x\) and \(y\) are positive integers, what is the units digit of \(a\)?
(1) \(100<y^2<x^2<169\)
(2) \(x^2-y^2=23\)

(1) \(100<y^2<x^2<169\) --> since both \(x\) and \(y\) are positive integers then \(x^2\) and \(y^2\) are perfect squares --> there are only two perfect squares in the given range 121=11^2 and 144=12^2 --> \(y=11\) and \(x=12\). Sufficient.(As cyclicity of units digit of \(7\) in integer power is \(4\), therefore the units digit of \(7^{23}\) is the same as the units digit of \(7^3\), so 3).

(2) \(x^2-y^2=23\) --> \((x-y)(x+y)=23=prime\) --> since both \(x\) and \(y\) are positive integers then: \(x-y=1\) and \(x+y=23\) --> \(y=11\) and \(x=12\). Sufficient.

Answer: D.


Hello Bunuel, for the second statement, you seem to indicate that since the difference of the squares of two positive integers is a prime number, the two integers are consecutive on the number scale. Does this always hold?
Thank you!

Kudos [?]: 35 [0], given: 549

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41892

Kudos [?]: 129172 [0], given: 12194

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 23 Jul 2014, 09:29
Kconfused wrote:
Bunuel wrote:
1. If \(357^x*117^y=a\), where \(x\) and \(y\) are positive integers, what is the units digit of \(a\)?
(1) \(100<y^2<x^2<169\)
(2) \(x^2-y^2=23\)

(1) \(100<y^2<x^2<169\) --> since both \(x\) and \(y\) are positive integers then \(x^2\) and \(y^2\) are perfect squares --> there are only two perfect squares in the given range 121=11^2 and 144=12^2 --> \(y=11\) and \(x=12\). Sufficient.(As cyclicity of units digit of \(7\) in integer power is \(4\), therefore the units digit of \(7^{23}\) is the same as the units digit of \(7^3\), so 3).

(2) \(x^2-y^2=23\) --> \((x-y)(x+y)=23=prime\) --> since both \(x\) and \(y\) are positive integers then: \(x-y=1\) and \(x+y=23\) --> \(y=11\) and \(x=12\). Sufficient.

Answer: D.


Hello Bunuel, for the second statement, you seem to indicate that since the difference of the squares of two positive integers is a prime number, the two integers are consecutive on the number scale. Does this always hold?
Thank you!


Yes, positive integer solutions of x^2-y^2=prime must be consecutive, because of x-y=1 (x=y+1).
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 129172 [0], given: 12194

1 KUDOS received
Senior Manager
Senior Manager
User avatar
Joined: 29 Oct 2008
Posts: 412

Kudos [?]: 342 [1], given: 34

Location: United States
Concentration: Marketing, Technology
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 20 Aug 2014, 03:17
1
This post received
KUDOS
Bunuel wrote:
Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.

Make prime factorization of 2,700 --> \(xyz=2^2*3^3*5^2\).

(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube --> if \(y\) is either \(2^2\) or \(2^2*5^2\) and z=3^3=odd perfect square then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.

(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.

(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) --> \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.

Answer: C.
Hope, you meant cube in the highlighted part
_________________

If you know what you're worth, then go out and get what you're worth. But you gotta be willing to take the hits, and not pointing fingers saying you ain't where you wanna be because of anybody! Cowards do that and You're better than that!
The path is long, but self-surrender makes it short; the way is difficult, but perfect trust makes it easy.

Fire the final bullet only when you are constantly hitting the Bull's eye, till then KEEP PRACTICING.
Failure establishes only this, that our determination to succeed was not strong enough.
Getting defeated is just a temporary notion, giving it up is what makes it permanent.

http://gmatclub.com/forum/1000-sc-notes-at-one-place-in-one-document-with-best-of-explanations-192961.html

Press +1 Kudos, if you think my post gave u a tiny tip.

Kudos [?]: 342 [1], given: 34

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41892

Kudos [?]: 129172 [0], given: 12194

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 20 Aug 2014, 03:22
joshnsit wrote:
Bunuel wrote:
Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.

Make prime factorization of 2,700 --> \(xyz=2^2*3^3*5^2\).

(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube --> if \(y\) is either \(2^2\) or \(2^2*5^2\) and z=3^3=odd perfect square then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.

(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.

(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) --> \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.

Answer: C.
Hope, you meant cube in the highlighted part


Yes. Edited. Thank you.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 129172 [0], given: 12194

Senior Manager
Senior Manager
User avatar
Joined: 29 Oct 2008
Posts: 412

Kudos [?]: 342 [0], given: 34

Location: United States
Concentration: Marketing, Technology
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 21 Aug 2014, 03:30
Bunuel wrote:
8. What is the value of \(x^2+y^3\)?
(1) \(x^6+y^9=0\)
(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\)

(1) \(x^6+y^9=0\) --> \((x^2)^3=(-y3)^3\) ---> \(x^2=-y^3\) --> \(x^2+y^3=0\). Sufficient.

(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\) --> \(3^{3x^2}=\frac{3}{3^{3y^2}*3}\) --> \(3^{3x^2}*3^{3y^2}=1\) --> \(3^{3x^2+3y^2}=1\) --> \(3x^2+3y^2=0\) (the power of 3 must be zero in order this equation to hold true) --> \(x^2+y^2=0\) the sum of two non-negative values is zero --> both \(x\) and \(y\) must be zero --> \(x=y=0\) --> \(x^2+y^3=0\). Sufficient.

Answer: D.
Hi Bunuel, I have a minor doubt. Using the corollary a^3+b^3=(a+b)(a^2-a*b+b^2) and plugging in a=x^2 and b=y^3 in statement 1,
we can say that (x^2)^3+(y^3)^3=(x^2+y^3)(x^4-x^2y^3+y^6)=0
Since any of expressions (x^2+y^3) or (x^4-x^2y^3+y^6) can be zero. It seems that statement 1 is insufficient by this logic.
Kindly comment.
_________________

If you know what you're worth, then go out and get what you're worth. But you gotta be willing to take the hits, and not pointing fingers saying you ain't where you wanna be because of anybody! Cowards do that and You're better than that!
The path is long, but self-surrender makes it short; the way is difficult, but perfect trust makes it easy.

Fire the final bullet only when you are constantly hitting the Bull's eye, till then KEEP PRACTICING.
Failure establishes only this, that our determination to succeed was not strong enough.
Getting defeated is just a temporary notion, giving it up is what makes it permanent.

http://gmatclub.com/forum/1000-sc-notes-at-one-place-in-one-document-with-best-of-explanations-192961.html

Press +1 Kudos, if you think my post gave u a tiny tip.

Kudos [?]: 342 [0], given: 34

Senior Manager
Senior Manager
User avatar
Joined: 29 Oct 2008
Posts: 412

Kudos [?]: 342 [0], given: 34

Location: United States
Concentration: Marketing, Technology
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 21 Aug 2014, 03:41
Bunuel wrote:
joshnsit wrote:
Bunuel wrote:
Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.

Make prime factorization of 2,700 --> \(xyz=2^2*3^3*5^2\).

(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube --> if \(y\) is either \(2^2\) or \(2^2*5^2\) and z=3^3=odd perfect square then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.

(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.

(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) --> \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.

Answer: C.
Hope, you meant cube in the highlighted part


Yes. Edited. Thank you.
Thanks for considering change. You may want to change Quant question M26-30 in gmatclub tests. This question actually brought me here. I couldn't get URL, but hopefully question id will be sufficient to trace.
_________________

If you know what you're worth, then go out and get what you're worth. But you gotta be willing to take the hits, and not pointing fingers saying you ain't where you wanna be because of anybody! Cowards do that and You're better than that!
The path is long, but self-surrender makes it short; the way is difficult, but perfect trust makes it easy.

Fire the final bullet only when you are constantly hitting the Bull's eye, till then KEEP PRACTICING.
Failure establishes only this, that our determination to succeed was not strong enough.
Getting defeated is just a temporary notion, giving it up is what makes it permanent.

http://gmatclub.com/forum/1000-sc-notes-at-one-place-in-one-document-with-best-of-explanations-192961.html

Press +1 Kudos, if you think my post gave u a tiny tip.

Kudos [?]: 342 [0], given: 34

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41892

Kudos [?]: 129172 [0], given: 12194

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 21 Aug 2014, 04:14
joshnsit wrote:
Bunuel wrote:
8. What is the value of \(x^2+y^3\)?
(1) \(x^6+y^9=0\)
(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\)

(1) \(x^6+y^9=0\) --> \((x^2)^3=(-y3)^3\) ---> \(x^2=-y^3\) --> \(x^2+y^3=0\). Sufficient.

(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\) --> \(3^{3x^2}=\frac{3}{3^{3y^2}*3}\) --> \(3^{3x^2}*3^{3y^2}=1\) --> \(3^{3x^2+3y^2}=1\) --> \(3x^2+3y^2=0\) (the power of 3 must be zero in order this equation to hold true) --> \(x^2+y^2=0\) the sum of two non-negative values is zero --> both \(x\) and \(y\) must be zero --> \(x=y=0\) --> \(x^2+y^3=0\). Sufficient.

Answer: D.
Hi Bunuel, I have a minor doubt. Using the corollary a^3+b^3=(a+b)(a^2-a*b+b^2) and plugging in a=x^2 and b=y^3 in statement 1,
we can say that (x^2)^3+(y^3)^3=(x^2+y^3)(x^4-x^2y^3+y^6)=0
Since any of expressions (x^2+y^3) or (x^4-x^2y^3+y^6) can be zero. It seems that statement 1 is insufficient by this logic.
Kindly comment.


The point is that only real roots of x^4 - x^2y^3 + y^6 = 0 is x = y = 0, for which x^2 + y^3 = 0.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 129172 [0], given: 12194

Senior Manager
Senior Manager
avatar
Joined: 08 Apr 2012
Posts: 446

Kudos [?]: 79 [0], given: 58

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 25 Sep 2014, 13:11
Bunuel wrote:
2. If x, y, and z are positive integers and \(xyz=2,700\). Is \(\sqrt{x}\) an integer?
(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube.
(2) \(\sqrt{z}\) is not an integer.

Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.

Make prime factorization of 2,700 --> \(xyz=2^2*3^3*5^2\).

(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube --> if \(y\) is either \(2^2\) or \(2^2*5^2\) and \(z=3^3=odd \ perfect \ cube\) then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.

(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.

(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) --> \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.

Answer: C.

Hi Bunuel,
Using stmt (2), is enough to know that Z#1. That would mean that Z must be the only non square left, and that is 3^3.
Why do we also need stmt (1)?

Kudos [?]: 79 [0], given: 58

Manager
Manager
User avatar
Joined: 04 Oct 2013
Posts: 176

Kudos [?]: 157 [0], given: 29

Concentration: Finance, Leadership
GMAT 1: 590 Q40 V30
GMAT 2: 730 Q49 V40
WE: Project Management (Entertainment and Sports)
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 14 Nov 2014, 03:28
ronr34 wrote:
Bunuel wrote:
2. If x, y, and z are positive integers and \(xyz=2,700\). Is \(\sqrt{x}\) an integer?
(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube.
(2) \(\sqrt{z}\) is not an integer.

Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.

Make prime factorization of 2,700 --> \(xyz=2^2*3^3*5^2\).

(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube --> if \(y\) is either \(2^2\) or \(2^2*5^2\) and \(z=3^3=odd \ perfect \ cube\) then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.

(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.

(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) --> \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.

Answer: C.

Hi Bunuel,
Using stmt (2), is enough to know that Z#1. That would mean that Z must be the only non square left, and that is 3^3.
Why do we also need stmt (1)?


Hey man, it's a GMAT mechanic. You don't add up informations until you can't prove that either statement holds alone. In this case z is not 1 but we don't know anything about y and x. x might be 5 to the power of 2 or 3 to the power of 3.
_________________

learn the rules of the game, then play better than anyone else.

Kudos [?]: 157 [0], given: 29

Manager
Manager
avatar
Joined: 25 Mar 2014
Posts: 167

Kudos [?]: 58 [0], given: 48

Location: India
Concentration: Operations, Finance
GMAT Date: 05-10-2015
GPA: 3.51
WE: Programming (Computer Software)
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 09 Jan 2015, 05:28
1
This post was
BOOKMARKED
Bunuel wrote:
8. What is the value of \(x^2+y^3\)?
(1) \(x^6+y^9=0\)
(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\)

(1) \(x^6+y^9=0\) --> \((x^2)^3=(-y3)^3\) ---> \(x^2=-y^3\) --> \(x^2+y^3=0\). Sufficient.

(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\) --> \(3^{3x^2}=\frac{3}{3^{3y^2}*3}\) --> \(3^{3x^2}*3^{3y^2}=1\) --> \(3^{3x^2+3y^2}=1\) --> \(3x^2+3y^2=0\) (the power of 3 must be zero in order this equation to hold true) --> \(x^2+y^2=0\) the sum of two non-negative values is zero --> both \(x\) and \(y\) must be zero --> \(x=y=0\) --> \(x^2+y^3=0\). Sufficient.

Answer: D.


Hi Bunuel,
I have a confusion. The problem statement with option no. 1 can be written as follows:
if a^3 + b^3 = 0 (1st option) then what is the value of a + b ? (where a = x^2 and b = y^3).
Now, we know that (a^3 + b^3) = (a+b) * (a^2 - a*b + b^2). (a^3 + b^3) has 2 factors.
And according to the explanation, since, (a^3 + b^3) =0 => a^3 = -(b^3) => a = -b => a + b = 0. So, whenever a^3 + b^3 is 0, a+b will also be 0 !!!!
Can these steps be true always? Please reply... i am really confused.
_________________

Please give Kudos to the post if you liked.

Kudos [?]: 58 [0], given: 48

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41892

Kudos [?]: 129172 [0], given: 12194

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 09 Jan 2015, 05:39
aniteshgmat1101 wrote:
Bunuel wrote:
8. What is the value of \(x^2+y^3\)?
(1) \(x^6+y^9=0\)
(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\)

(1) \(x^6+y^9=0\) --> \((x^2)^3=(-y3)^3\) ---> \(x^2=-y^3\) --> \(x^2+y^3=0\). Sufficient.

(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\) --> \(3^{3x^2}=\frac{3}{3^{3y^2}*3}\) --> \(3^{3x^2}*3^{3y^2}=1\) --> \(3^{3x^2+3y^2}=1\) --> \(3x^2+3y^2=0\) (the power of 3 must be zero in order this equation to hold true) --> \(x^2+y^2=0\) the sum of two non-negative values is zero --> both \(x\) and \(y\) must be zero --> \(x=y=0\) --> \(x^2+y^3=0\). Sufficient.

Answer: D.


Hi Bunuel,
I have a confusion. The problem statement with option no. 1 can be written as follows:
if a^3 + b^3 = 0 (1st option) then what is the value of a + b ? (where a = x^2 and b = y^3).
Now, we know that (a^3 + b^3) = (a+b) * (a^2 - a*b + b^2). (a^3 + b^3) has 2 factors.
And according to the explanation, since, (a^3 + b^3) =0 => a^3 = -(b^3) => a = -b => a + b = 0. So, whenever a^3 + b^3 is 0, a+b will also be 0 !!!!
Can these steps be true always? Please reply... i am really confused.


Yes, if a^3 + b^3 = 0, then a + b = 0.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 129172 [0], given: 12194

Senior Manager
Senior Manager
avatar
S
Joined: 07 Sep 2014
Posts: 484

Kudos [?]: 30 [0], given: 342

Concentration: Finance, Marketing
CAT Tests
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 20 Jun 2015, 22:05
Bunuel wrote:
1. If \(357^x*117^y=a\), where \(x\) and \(y\) are positive integers, what is the units digit of \(a\)?
(1) \(100<y^2<x^2<169\)
(2) \(x^2-y^2=23\)

(1) \(100<y^2<x^2<169\) --> since both \(x\) and \(y\) are positive integers then \(x^2\) and \(y^2\) are perfect squares --> there are only two perfect squares in the given range 121=11^2 and 144=12^2 --> \(y=11\) and \(x=12\). Sufficient.(As cyclicity of units digit of \(7\) in integer power is \(4\), therefore the units digit of \(7^{23}\) is the same as the units digit of \(7^3\), so 3).

(2) \(x^2-y^2=23\) --> \((x-y)(x+y)=23=prime\) --> since both \(x\) and \(y\) are positive integers then: \(x-y=1\) and \(x+y=23\) --> \(y=11\) and \(x=12\). Sufficient.

Answer: D.


Bunuel : Hi, it is not written that x can not be equal to y.
so what if x= y= 11
or x=y=12

in that case A will not be sufficient.

Kudos [?]: 30 [0], given: 342

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41892

Kudos [?]: 129172 [1], given: 12194

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 20 Jun 2015, 23:40
1
This post received
KUDOS
Expert's post
MyaimHarvard wrote:
Bunuel wrote:
1. If \(357^x*117^y=a\), where \(x\) and \(y\) are positive integers, what is the units digit of \(a\)?
(1) \(100<y^2<x^2<169\)
(2) \(x^2-y^2=23\)

(1) \(100<y^2<x^2<169\) --> since both \(x\) and \(y\) are positive integers then \(x^2\) and \(y^2\) are perfect squares --> there are only two perfect squares in the given range 121=11^2 and 144=12^2 --> \(y=11\) and \(x=12\). Sufficient.(As cyclicity of units digit of \(7\) in integer power is \(4\), therefore the units digit of \(7^{23}\) is the same as the units digit of \(7^3\), so 3).

(2) \(x^2-y^2=23\) --> \((x-y)(x+y)=23=prime\) --> since both \(x\) and \(y\) are positive integers then: \(x-y=1\) and \(x+y=23\) --> \(y=11\) and \(x=12\). Sufficient.

Answer: D.


Bunuel : Hi, it is not written that x can not be equal to y.
so what if x= y= 11
or x=y=12

in that case A will not be sufficient.


x = y is not possible since we are told that y^2 < x^2.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 129172 [1], given: 12194

Manager
Manager
User avatar
B
Joined: 16 Jan 2013
Posts: 93

Kudos [?]: 3 [0], given: 1193

Location: Bangladesh
GMAT 1: 490 Q41 V18
GPA: 2.75
Premium Member CAT Tests
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 12 Jul 2015, 16:28
Bunuel wrote:
4. If \(xyz\neq{0}\) is \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\)?
(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\)
(2) \(y^3>\frac{1}{z{^4}}\)

\(xyz\neq{0}\) means that neither of unknown is equal to zero. Next, \((x^{-4})*(\sqrt[3]{y})*(z^{-2})=\frac{\sqrt[3]{y}}{x^4*z^2}\), so the question becomes: is \(\frac{\sqrt[3]{y}}{x^4*z^2}<0\)? Since \(x^4\) and \(z^2\) are positive numbers then the question boils down whether \(\sqrt[3]{y}<0\), which is the same as whether \(y<0\) (recall that odd roots have the same sign as the base of the root, for example: \(\sqrt[3]{125} =5\) and \(\sqrt[3]{-64} =-4\)).

(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) --> as even root from positive number (\(x^2\) in our case) is positive then \(\sqrt[5]{y}>\sqrt[4]{x^2}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

(2) \(y^3>\frac{1}{z{^4}}\) --> the same here as \(\frac{1}{z{^4}}>0\) then \(y^3>\frac{1}{z{^4}}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

Answer: D.



Hello sir,
It was not mentioned in the question stem whether x, y and z are integers. In this question, if x, y and z were non-integers, wouldn't the procedure be different? Would you please explain?

Thanks! :D
_________________

Heading towards perfection>>

Kudos [?]: 3 [0], given: 1193

Expert Post
1 KUDOS received
Math Forum Moderator
avatar
B
Joined: 20 Mar 2014
Posts: 2675

Kudos [?]: 1728 [1], given: 792

Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
GMAT ToolKit User Premium Member Reviews Badge
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 12 Jul 2015, 16:59
1
This post received
KUDOS
Expert's post
ranaazad wrote:
Bunuel wrote:
4. If \(xyz\neq{0}\) is \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\)?
(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\)
(2) \(y^3>\frac{1}{z{^4}}\)

\(xyz\neq{0}\) means that neither of unknown is equal to zero. Next, \((x^{-4})*(\sqrt[3]{y})*(z^{-2})=\frac{\sqrt[3]{y}}{x^4*z^2}\), so the question becomes: is \(\frac{\sqrt[3]{y}}{x^4*z^2}<0\)? Since \(x^4\) and \(z^2\) are positive numbers then the question boils down whether \(\sqrt[3]{y}<0\), which is the same as whether \(y<0\) (recall that odd roots have the same sign as the base of the root, for example: \(\sqrt[3]{125} =5\) and \(\sqrt[3]{-64} =-4\)).

(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) --> as even root from positive number (\(x^2\) in our case) is positive then \(\sqrt[5]{y}>\sqrt[4]{x^2}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

(2) \(y^3>\frac{1}{z{^4}}\) --> the same here as \(\frac{1}{z{^4}}>0\) then \(y^3>\frac{1}{z{^4}}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.

Answer: D.




Hello sir,
It was not mentioned in the question stem whether x, y and z are integers. In this question, if x, y and z were non-integers, wouldn't the procedure be different? Would you please explain?

Thanks! :D


This question has a trick in that it will be true for both integers and non-integers alike:

1. x^2 > 0 no matter x=integer or not. Similarly, \(\sqrt[4]{x^2}\) will be positive for x=integer or non-integer. Try it out. Let x = 1 , \(\sqrt[4]{1^2} = 1 > 0\) and if x= 0.5, \(\sqrt[4]{0.5^2} = 0.707 >0.\)

Thus it does not matter whether you take x = integer or a fraction.

Coming back to the question,

Per statement 1, as mentioned above, \(\sqrt[4]{1^2} = 1 > 0\) ---> \(\sqrt[5]{y} > 0\) -----> y >0. Thus the statement \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\) will be false. Thus this statement is sufficient.

Per statement 2, z^4 > 0 whether z =1 or z= 0.5 ----> 1/(z^4) >0 ----> y^3 >0---> y>0 (satisfies for both, y =1 or y = 0.25). Thus the given statement \((x^{-4})*(\sqrt[3]{y})*(z^{-2})<0\) will be false. Thus this statement is sufficient.

As both the given statements are sufficient, the correct answer is D.

whenever you are in doubt, always test the given statements/conditions with different values (integers, fractions , etc). This way you will get a better picture.
_________________

Thursday with Ron updated list as of July 1st, 2015: http://gmatclub.com/forum/consolidated-thursday-with-ron-list-for-all-the-sections-201006.html#p1544515
Rules for Posting in Quant Forums: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html
Writing Mathematical Formulae in your posts: http://gmatclub.com/forum/rules-for-posting-please-read-this-before-posting-133935.html#p1096628
GMATCLUB Math Book: http://gmatclub.com/forum/gmat-math-book-in-downloadable-pdf-format-130609.html
Everything Related to Inequalities: http://gmatclub.com/forum/inequalities-made-easy-206653.html#p1582891
Inequalities tips: http://gmatclub.com/forum/inequalities-tips-and-hints-175001.html
Debrief, 650 to 750: http://gmatclub.com/forum/650-to-750-a-10-month-journey-to-the-score-203190.html

Kudos [?]: 1728 [1], given: 792

Manager
Manager
User avatar
B
Joined: 16 Jan 2013
Posts: 93

Kudos [?]: 3 [0], given: 1193

Location: Bangladesh
GMAT 1: 490 Q41 V18
GPA: 2.75
Premium Member CAT Tests
Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 12 Jul 2015, 17:03
Bunuel wrote:
8. What is the value of \(x^2+y^3\)?
(1) \(x^6+y^9=0\)
(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\)

(1) \(x^6+y^9=0\) --> \((x^2)^3=(-y3)^3\) ---> \(x^2=-y^3\) --> \(x^2+y^3=0\). Sufficient.

(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\) --> \(3^{3x^2}=\frac{3}{3^{3y^2}*3}\) --> \(3^{3x^2}*3^{3y^2}=1\) --> \(3^{3x^2+3y^2}=1\) --> \(3x^2+3y^2=0\) (the power of 3 must be zero in order this equation to hold true) --> \(x^2+y^2=0\) the sum of two non-negative values is zero --> both \(x\) and \(y\) must be zero --> \(x=y=0\) --> \(x^2+y^3=0\). Sufficient.

Answer: D.



Hello Bunuel,
Nice explanations. I can't figure out why exponents over exponents act different sometimes. When to multiply and when to add them? Here, why isn't (x^2)^3 = x^8 and (-y^3)^3 = -y^27, please explain? As we know, 3^3^3 = 27.

Could you please explicate?
_________________

Heading towards perfection>>

Kudos [?]: 3 [0], given: 1193

Expert Post
1 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41892

Kudos [?]: 129172 [1], given: 12194

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]

Show Tags

New post 13 Jul 2015, 00:56
1
This post received
KUDOS
Expert's post
ranaazad wrote:
Bunuel wrote:
8. What is the value of \(x^2+y^3\)?
(1) \(x^6+y^9=0\)
(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\)

(1) \(x^6+y^9=0\) --> \((x^2)^3=(-y3)^3\) ---> \(x^2=-y^3\) --> \(x^2+y^3=0\). Sufficient.

(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\) --> \(3^{3x^2}=\frac{3}{3^{3y^2}*3}\) --> \(3^{3x^2}*3^{3y^2}=1\) --> \(3^{3x^2+3y^2}=1\) --> \(3x^2+3y^2=0\) (the power of 3 must be zero in order this equation to hold true) --> \(x^2+y^2=0\) the sum of two non-negative values is zero --> both \(x\) and \(y\) must be zero --> \(x=y=0\) --> \(x^2+y^3=0\). Sufficient.

Answer: D.



Hello Bunuel,
Nice explanations. I can't figure out why exponents over exponents act different sometimes. When to multiply and when to add them? Here, why isn't (x^2)^3 = x^8 and (-y^3)^3 = -y^27, please explain? As we know, 3^3^3 = 27.

Could you please explicate?


Please read the second post of this topic: new-tough-and-tricky-exponents-and-roots-questions-125967.html#p1027927

\((a^m)^n=a^{mn}\)

\(a^m^n=a^{(m^n)}\) and not \((a^m)^n\) (if exponentiation is indicated by stacked symbols, the rule is to work from the top down)
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 129172 [1], given: 12194

Re: NEW!!! Tough and tricky exponents and roots questions   [#permalink] 13 Jul 2015, 00:56

Go to page   Previous    1   2   3   4   5    Next  [ 98 posts ] 

Display posts from previous: Sort by

NEW!!! Tough and tricky exponents and roots questions

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.