Author 
Message 
TAGS:

Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 44423

NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
12 Jan 2012, 03:50
24
This post received KUDOS
Expert's post
146
This post was BOOKMARKED
Exponents and roots problems are very common on the GMAT. So, it's extremely important to know how to manipulate them, how to factor out, take roots, multiply, divide, etc. Below are 11 problems to test your skills. Please post your thought process/solutions along with the answers.
I'll post OA's with detailed solutions tomorrow. Good luck.1. If \(357^x*117^y=a\), where \(x\) and \(y\) are positive integers, what is the units digit of \(a\)?(1) \(100<y^2<x^2<169\) (2) \(x^2y^2=23\) Solution: toughandtrickyexponentsandrootsquestions125967.html#p10292392. If x, y, and z are positive integers and \(xyz=2,700\). Is \(\sqrt{x}\) an integer?(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube. (2) \(\sqrt{z}\) is not an integer. Solution: toughandtrickyexponentsandrootsquestions125967.html#p10292403. If \(x>y>0\) then what is the value of \(\frac{\sqrt{2x}+\sqrt{2y}}{xy}\)?(1) \(x+y=4+2\sqrt{xy}\) (2) \(xy=9\) Solution: toughandtrickyexponentsandrootsquestions125967.html#p10292414. If \(xyz\neq{0}\) is \((x^{4})*(\sqrt[3]{y})*(z^{2})<0\)?(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) (2) \(y^3>\frac{1}{z{^4}}\) Solution: toughandtrickyexponentsandrootsquestions125967.html#p10292425. If \(x\) and \(y\) are negative integers, then what is the value of \(xy\)?(1) \(x^y=\frac{1}{81}\) (2) \(y^x=\frac{1}{64}\) Solution: toughandtrickyexponentsandrootsquestions125967.html#p10292436. If \(x>{0}\) then what is the value of \(y^x\)?(1) \(\frac{4^{(x+y)^2}}{4^{(xy)^2}}=128^{xy}\) (2) \(x\neq{1}\) and \(x^y=1\) Solution: toughandtrickyexponentsandrootsquestions125967.html#p10292447. If \(x\) is a positive integer is \(\sqrt{x}\) an integer?(1) \(\sqrt{7*x}\) is an integer (2) \(\sqrt{9*x}\) is not an integer Solution: toughandtrickyexponentsandrootsquestions12596720.html#p10292458. What is the value of \(x^2+y^3\)?(1) \(x^6+y^9=0\) (2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\) Solution: toughandtrickyexponentsandrootsquestions12596720.html#p10292469. If \(x\), \(y\) and \(z\) are nonzero numbers, what is the value of \(\frac{x^3+y^3+z^3}{xyz}\)?(1) \(xyz=6\) (2) \(x+y+z=0\) Solution: toughandtrickyexponentsandrootsquestions12596720.html#p102924710. If \(x\) and \(y\) are nonnegative integers and \(x+y>0\) is \((x+y)^{xy}\) an even integer?(1) \(2^{xy}=\sqrt[(x+y)]{16}\) (2) \(2^x+3^y=\sqrt[(x+y)]{25}\) Solution: toughandtrickyexponentsandrootsquestions12596720.html#p102924811. What is the value of \(xy\)?(1) \(3^x*5^y=75\) (2) \(3^{(x1)(y2)}=1\) Solution: toughandtrickyexponentsandrootsquestions12596720.html#p1029249
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 21 May 2013
Posts: 10

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
01 Jul 2014, 10:47
Bunuel wrote: gkashyap wrote: Bunuel wrote: 1. If \(357^x*117^y=a\), where \(x\) and \(y\) are positive integers, what is the units digit of \(a\)? (1) \(100<y^2<x^2<169\) (2) \(x^2y^2=23\)
(1) \(100<y^2<x^2<169\) > since both \(x\) and \(y\) are positive integers then \(x^2\) and \(y^2\) are perfect squares > there are only two perfect squares in the given range 121=11^2 and 144=12^2 > \(y=11\) and \(x=12\). Sufficient.(As cyclicity of units digit of \(7\) in integer power is \(4\), therefore the units digit of \(7^{23}\) is the same as the units digit of \(7^3\), so 3).
(2) \(x^2y^2=23\) > \((xy)(x+y)=23=prime\) > since both \(x\) and \(y\) are positive integers then: \(xy=1\) and \(x+y=23\) > \(y=11\) and \(x=12\). Sufficient.
Answer: D. Hi Bunuel, Could you please provide me some explanation for (2) when you say " since both x and y are positive integers then: xy=1 and x+y=23 > y=11 and x=12"? How can we assume that x  y = 1? It could have been any two numbers. Is there a theory that if difference of square of two numbers, then they are consecutive? Could you please provide some reference? Thanks for the help. Regards, Gajendra \((xy)(x+y)=23=prime\). 23 is a prime number, so it can be broken into the product of two positive multiples only in one way 23=1*23. Now, since x and y are positive integers, then xy<x+y, thus xy=1 and x+y=23. Does this make sense? Yes, it is clear now. Thanks !!



Intern
Joined: 05 Apr 2014
Posts: 14

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
15 Jul 2014, 11:16
Bunuel wrote: 2. If x, y, and z are positive integers and \(xyz=2,700\). Is \(\sqrt{x}\) and integer? (1) \(y\) is an even perfect square and \(z\) is an odd perfect cube. (2) \(\sqrt{z}\) is not an integer.
Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.
Make prime factorization of 2,700 > \(xyz=2^2*3^3*5^2\).
(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube > if \(y\) is either \(2^2\) or \(2^2*5^2\) and \(z=3^3=odd \ perfect \ square\) then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.
(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.
(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) > \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.
Answer: C. Hi Bunuel, Please explain why statement 2 is insufficient. If z^(1/2) is not an integer then z is not a perfect square, so z can be 27, 27*4, 27*25 or 27*25*4. In all these cases the leftout factors are perfect squares. Therefore x must be a perfect square (4,25,100 or 1)
_________________
If anything above makes any sense to you, please let me and others know by hitting the "+1 KUDOS" button



Math Expert
Joined: 02 Sep 2009
Posts: 44423

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
15 Jul 2014, 11:42
shuvabrata88 wrote: Bunuel wrote: 2. If x, y, and z are positive integers and \(xyz=2,700\). Is \(\sqrt{x}\) and integer? (1) \(y\) is an even perfect square and \(z\) is an odd perfect cube. (2) \(\sqrt{z}\) is not an integer.
Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.
Make prime factorization of 2,700 > \(xyz=2^2*3^3*5^2\).
(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube > if \(y\) is either \(2^2\) or \(2^2*5^2\) and \(z=3^3=odd \ perfect \ square\) then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.
(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.
(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) > \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.
Answer: C. Hi Bunuel, Please explain why statement 2 is insufficient. If z^(1/2) is not an integer then z is not a perfect square, so z can be 27, 27*4, 27*25 or 27*25*4. In all these cases the leftout factors are perfect squares. Therefore x must be a perfect square (4,25,100 or 1) What about y in this cases? Also, there are other cases possible. For example, z=3, y=2*3^2*5^2 and x=2.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Intern
Joined: 17 Oct 2013
Posts: 49
Location: India
Concentration: Strategy, Statistics
WE: Analyst (Computer Software)

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
23 Jul 2014, 06:39
Bunuel wrote: 1. If \(357^x*117^y=a\), where \(x\) and \(y\) are positive integers, what is the units digit of \(a\)? (1) \(100<y^2<x^2<169\) (2) \(x^2y^2=23\)
(1) \(100<y^2<x^2<169\) > since both \(x\) and \(y\) are positive integers then \(x^2\) and \(y^2\) are perfect squares > there are only two perfect squares in the given range 121=11^2 and 144=12^2 > \(y=11\) and \(x=12\). Sufficient.(As cyclicity of units digit of \(7\) in integer power is \(4\), therefore the units digit of \(7^{23}\) is the same as the units digit of \(7^3\), so 3).
(2) \(x^2y^2=23\) > \((xy)(x+y)=23=prime\) > since both \(x\) and \(y\) are positive integers then: \(xy=1\) and \(x+y=23\) > \(y=11\) and \(x=12\). Sufficient.
Answer: D. Hello Bunuel, for the second statement, you seem to indicate that since the difference of the squares of two positive integers is a prime number, the two integers are consecutive on the number scale. Does this always hold? Thank you!



Math Expert
Joined: 02 Sep 2009
Posts: 44423

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
23 Jul 2014, 09:29
Kconfused wrote: Bunuel wrote: 1. If \(357^x*117^y=a\), where \(x\) and \(y\) are positive integers, what is the units digit of \(a\)? (1) \(100<y^2<x^2<169\) (2) \(x^2y^2=23\)
(1) \(100<y^2<x^2<169\) > since both \(x\) and \(y\) are positive integers then \(x^2\) and \(y^2\) are perfect squares > there are only two perfect squares in the given range 121=11^2 and 144=12^2 > \(y=11\) and \(x=12\). Sufficient.(As cyclicity of units digit of \(7\) in integer power is \(4\), therefore the units digit of \(7^{23}\) is the same as the units digit of \(7^3\), so 3).
(2) \(x^2y^2=23\) > \((xy)(x+y)=23=prime\) > since both \(x\) and \(y\) are positive integers then: \(xy=1\) and \(x+y=23\) > \(y=11\) and \(x=12\). Sufficient.
Answer: D. Hello Bunuel, for the second statement, you seem to indicate that since the difference of the squares of two positive integers is a prime number, the two integers are consecutive on the number scale. Does this always hold? Thank you! Yes, positive integer solutions of x^2y^2=prime must be consecutive, because of xy=1 (x=y+1).
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Joined: 29 Oct 2008
Posts: 407
Location: United States
Concentration: Marketing, Technology

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
20 Aug 2014, 03:17
1
This post received KUDOS
Bunuel wrote: Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.
Make prime factorization of 2,700 > \(xyz=2^2*3^3*5^2\).
(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube > if \(y\) is either \(2^2\) or \(2^2*5^2\) and z=3^3=odd perfect square then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.
(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.
(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) > \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.
Answer: C. Hope, you meant cube in the highlighted part
_________________
If you know what you're worth, then go out and get what you're worth. But you gotta be willing to take the hits, and not pointing fingers saying you ain't where you wanna be because of anybody! Cowards do that and You're better than that! The path is long, but selfsurrender makes it short; the way is difficult, but perfect trust makes it easy. Fire the final bullet only when you are constantly hitting the Bull's eye, till then KEEP PRACTICING. Failure establishes only this, that our determination to succeed was not strong enough. Getting defeated is just a temporary notion, giving it up is what makes it permanent.
http://gmatclub.com/forum/1000scnotesatoneplaceinonedocumentwithbestofexplanations192961.html
Press +1 Kudos, if you think my post gave u a tiny tip.



Math Expert
Joined: 02 Sep 2009
Posts: 44423

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
20 Aug 2014, 03:22
joshnsit wrote: Bunuel wrote: Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.
Make prime factorization of 2,700 > \(xyz=2^2*3^3*5^2\).
(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube > if \(y\) is either \(2^2\) or \(2^2*5^2\) and z=3^3=odd perfect square then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.
(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.
(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) > \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.
Answer: C. Hope, you meant cube in the highlighted part Yes. Edited. Thank you.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Joined: 29 Oct 2008
Posts: 407
Location: United States
Concentration: Marketing, Technology

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
21 Aug 2014, 03:30
Bunuel wrote: 8. What is the value of \(x^2+y^3\)? (1) \(x^6+y^9=0\) (2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\)
(1) \(x^6+y^9=0\) > \((x^2)^3=(y3)^3\) > \(x^2=y^3\) > \(x^2+y^3=0\). Sufficient.
(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\) > \(3^{3x^2}=\frac{3}{3^{3y^2}*3}\) > \(3^{3x^2}*3^{3y^2}=1\) > \(3^{3x^2+3y^2}=1\) > \(3x^2+3y^2=0\) (the power of 3 must be zero in order this equation to hold true) > \(x^2+y^2=0\) the sum of two nonnegative values is zero > both \(x\) and \(y\) must be zero > \(x=y=0\) > \(x^2+y^3=0\). Sufficient.
Answer: D. Hi Bunuel, I have a minor doubt. Using the corollary a^3+b^3=(a+b)(a^2a*b+b^2) and plugging in a=x^2 and b=y^3 in statement 1, we can say that (x^2)^3+(y^3)^3=(x^2+y^3)(x^4x^2y^3+y^6)=0 Since any of expressions (x^2+y^3) or (x^4x^2y^3+y^6) can be zero. It seems that statement 1 is insufficient by this logic. Kindly comment.
_________________
If you know what you're worth, then go out and get what you're worth. But you gotta be willing to take the hits, and not pointing fingers saying you ain't where you wanna be because of anybody! Cowards do that and You're better than that! The path is long, but selfsurrender makes it short; the way is difficult, but perfect trust makes it easy. Fire the final bullet only when you are constantly hitting the Bull's eye, till then KEEP PRACTICING. Failure establishes only this, that our determination to succeed was not strong enough. Getting defeated is just a temporary notion, giving it up is what makes it permanent.
http://gmatclub.com/forum/1000scnotesatoneplaceinonedocumentwithbestofexplanations192961.html
Press +1 Kudos, if you think my post gave u a tiny tip.



Senior Manager
Joined: 29 Oct 2008
Posts: 407
Location: United States
Concentration: Marketing, Technology

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
21 Aug 2014, 03:41
Bunuel wrote: joshnsit wrote: Bunuel wrote: Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.
Make prime factorization of 2,700 > \(xyz=2^2*3^3*5^2\).
(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube > if \(y\) is either \(2^2\) or \(2^2*5^2\) and z=3^3=odd perfect square then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.
(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.
(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) > \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.
Answer: C. Hope, you meant cube in the highlighted part Yes. Edited. Thank you. Thanks for considering change. You may want to change Quant question M2630 in gmatclub tests. This question actually brought me here. I couldn't get URL, but hopefully question id will be sufficient to trace.
_________________
If you know what you're worth, then go out and get what you're worth. But you gotta be willing to take the hits, and not pointing fingers saying you ain't where you wanna be because of anybody! Cowards do that and You're better than that! The path is long, but selfsurrender makes it short; the way is difficult, but perfect trust makes it easy. Fire the final bullet only when you are constantly hitting the Bull's eye, till then KEEP PRACTICING. Failure establishes only this, that our determination to succeed was not strong enough. Getting defeated is just a temporary notion, giving it up is what makes it permanent.
http://gmatclub.com/forum/1000scnotesatoneplaceinonedocumentwithbestofexplanations192961.html
Press +1 Kudos, if you think my post gave u a tiny tip.



Math Expert
Joined: 02 Sep 2009
Posts: 44423

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
21 Aug 2014, 04:14
joshnsit wrote: Bunuel wrote: 8. What is the value of \(x^2+y^3\)? (1) \(x^6+y^9=0\) (2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\)
(1) \(x^6+y^9=0\) > \((x^2)^3=(y3)^3\) > \(x^2=y^3\) > \(x^2+y^3=0\). Sufficient.
(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\) > \(3^{3x^2}=\frac{3}{3^{3y^2}*3}\) > \(3^{3x^2}*3^{3y^2}=1\) > \(3^{3x^2+3y^2}=1\) > \(3x^2+3y^2=0\) (the power of 3 must be zero in order this equation to hold true) > \(x^2+y^2=0\) the sum of two nonnegative values is zero > both \(x\) and \(y\) must be zero > \(x=y=0\) > \(x^2+y^3=0\). Sufficient.
Answer: D. Hi Bunuel, I have a minor doubt. Using the corollary a^3+b^3=(a+b)(a^2a*b+b^2) and plugging in a=x^2 and b=y^3 in statement 1, we can say that (x^2)^3+(y^3)^3=(x^2+y^3)(x^4x^2y^3+y^6)=0 Since any of expressions (x^2+y^3) or (x^4x^2y^3+y^6) can be zero. It seems that statement 1 is insufficient by this logic. Kindly comment. The point is that only real roots of x^4  x^2y^3 + y^6 = 0 is x = y = 0, for which x^2 + y^3 = 0.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Joined: 08 Apr 2012
Posts: 436

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
25 Sep 2014, 13:11
Bunuel wrote: 2. If x, y, and z are positive integers and \(xyz=2,700\). Is \(\sqrt{x}\) an integer? (1) \(y\) is an even perfect square and \(z\) is an odd perfect cube. (2) \(\sqrt{z}\) is not an integer.
Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.
Make prime factorization of 2,700 > \(xyz=2^2*3^3*5^2\).
(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube > if \(y\) is either \(2^2\) or \(2^2*5^2\) and \(z=3^3=odd \ perfect \ cube\) then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.
(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.
(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) > \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.
Answer: C. Hi Bunuel, Using stmt (2), is enough to know that Z#1. That would mean that Z must be the only non square left, and that is 3^3. Why do we also need stmt (1)?



Manager
Joined: 04 Oct 2013
Posts: 176
Concentration: Finance, Leadership
GMAT 1: 590 Q40 V30 GMAT 2: 730 Q49 V40
WE: Project Management (Entertainment and Sports)

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
14 Nov 2014, 03:28
ronr34 wrote: Bunuel wrote: 2. If x, y, and z are positive integers and \(xyz=2,700\). Is \(\sqrt{x}\) an integer? (1) \(y\) is an even perfect square and \(z\) is an odd perfect cube. (2) \(\sqrt{z}\) is not an integer.
Note: a perfect square, is an integer that can be written as the square of some other integer. For example 16=4^2, is a perfect square. Similarly a perfect cube, is an integer that can be written as the cube of some other integer. For example 27=3^3, is a perfect cube.
Make prime factorization of 2,700 > \(xyz=2^2*3^3*5^2\).
(1) \(y\) is an even perfect square and \(z\) is an odd perfect cube > if \(y\) is either \(2^2\) or \(2^2*5^2\) and \(z=3^3=odd \ perfect \ cube\) then \(x\) must be a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). But if \(z=1^3=odd \ perfect \ cube\) then \(x\) could be \(3^3\) which makes \(\sqrt{x}\) not an integer. Not sufficient.
(2) \(\sqrt{z}\) is not an integer. Clearly insufficient.
(1)+(2) As from (2) \(\sqrt{z}\neq{integer}\) then \(z\neq{1}\), therefore it must be \(3^3\) (from 1) > \(x\) is a perfect square which makes \(\sqrt{x}\) an integer: \(x=5^2\) or \(x=1\). Sufficient.
Answer: C. Hi Bunuel, Using stmt (2), is enough to know that Z#1. That would mean that Z must be the only non square left, and that is 3^3. Why do we also need stmt (1)? Hey man, it's a GMAT mechanic. You don't add up informations until you can't prove that either statement holds alone. In this case z is not 1 but we don't know anything about y and x. x might be 5 to the power of 2 or 3 to the power of 3.
_________________
learn the rules of the game, then play better than anyone else.



Manager
Joined: 25 Mar 2014
Posts: 166
Location: India
Concentration: Operations, Finance
GMAT Date: 05102015
GPA: 3.51
WE: Programming (Computer Software)

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
09 Jan 2015, 05:28
1
This post was BOOKMARKED
Bunuel wrote: 8. What is the value of \(x^2+y^3\)? (1) \(x^6+y^9=0\) (2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\)
(1) \(x^6+y^9=0\) > \((x^2)^3=(y3)^3\) > \(x^2=y^3\) > \(x^2+y^3=0\). Sufficient.
(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\) > \(3^{3x^2}=\frac{3}{3^{3y^2}*3}\) > \(3^{3x^2}*3^{3y^2}=1\) > \(3^{3x^2+3y^2}=1\) > \(3x^2+3y^2=0\) (the power of 3 must be zero in order this equation to hold true) > \(x^2+y^2=0\) the sum of two nonnegative values is zero > both \(x\) and \(y\) must be zero > \(x=y=0\) > \(x^2+y^3=0\). Sufficient.
Answer: D. Hi Bunuel, I have a confusion. The problem statement with option no. 1 can be written as follows: if a^3 + b^3 = 0 (1st option) then what is the value of a + b ? (where a = x^2 and b = y^3). Now, we know that (a^3 + b^3) = (a+b) * (a^2  a*b + b^2). (a^3 + b^3) has 2 factors. And according to the explanation, since, (a^3 + b^3) =0 => a^3 = (b^3) => a = b => a + b = 0. So, whenever a^3 + b^3 is 0, a+b will also be 0 !!!! Can these steps be true always? Please reply... i am really confused.
_________________
Please give Kudos to the post if you liked.



Math Expert
Joined: 02 Sep 2009
Posts: 44423

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
09 Jan 2015, 05:39
aniteshgmat1101 wrote: Bunuel wrote: 8. What is the value of \(x^2+y^3\)? (1) \(x^6+y^9=0\) (2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\)
(1) \(x^6+y^9=0\) > \((x^2)^3=(y3)^3\) > \(x^2=y^3\) > \(x^2+y^3=0\). Sufficient.
(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\) > \(3^{3x^2}=\frac{3}{3^{3y^2}*3}\) > \(3^{3x^2}*3^{3y^2}=1\) > \(3^{3x^2+3y^2}=1\) > \(3x^2+3y^2=0\) (the power of 3 must be zero in order this equation to hold true) > \(x^2+y^2=0\) the sum of two nonnegative values is zero > both \(x\) and \(y\) must be zero > \(x=y=0\) > \(x^2+y^3=0\). Sufficient.
Answer: D. Hi Bunuel, I have a confusion. The problem statement with option no. 1 can be written as follows: if a^3 + b^3 = 0 (1st option) then what is the value of a + b ? (where a = x^2 and b = y^3). Now, we know that (a^3 + b^3) = (a+b) * (a^2  a*b + b^2). (a^3 + b^3) has 2 factors. And according to the explanation, since, (a^3 + b^3) =0 => a^3 = (b^3) => a = b => a + b = 0. So, whenever a^3 + b^3 is 0, a+b will also be 0 !!!! Can these steps be true always? Please reply... i am really confused. Yes, if a^3 + b^3 = 0, then a + b = 0.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Joined: 07 Sep 2014
Posts: 464
Concentration: Finance, Marketing

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
20 Jun 2015, 22:05
Bunuel wrote: 1. If \(357^x*117^y=a\), where \(x\) and \(y\) are positive integers, what is the units digit of \(a\)? (1) \(100<y^2<x^2<169\) (2) \(x^2y^2=23\)
(1) \(100<y^2<x^2<169\) > since both \(x\) and \(y\) are positive integers then \(x^2\) and \(y^2\) are perfect squares > there are only two perfect squares in the given range 121=11^2 and 144=12^2 > \(y=11\) and \(x=12\). Sufficient.(As cyclicity of units digit of \(7\) in integer power is \(4\), therefore the units digit of \(7^{23}\) is the same as the units digit of \(7^3\), so 3).
(2) \(x^2y^2=23\) > \((xy)(x+y)=23=prime\) > since both \(x\) and \(y\) are positive integers then: \(xy=1\) and \(x+y=23\) > \(y=11\) and \(x=12\). Sufficient.
Answer: D. Bunuel : Hi, it is not written that x can not be equal to y. so what if x= y= 11 or x=y=12 in that case A will not be sufficient.



Math Expert
Joined: 02 Sep 2009
Posts: 44423

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
20 Jun 2015, 23:40
MyaimHarvard wrote: Bunuel wrote: 1. If \(357^x*117^y=a\), where \(x\) and \(y\) are positive integers, what is the units digit of \(a\)? (1) \(100<y^2<x^2<169\) (2) \(x^2y^2=23\)
(1) \(100<y^2<x^2<169\) > since both \(x\) and \(y\) are positive integers then \(x^2\) and \(y^2\) are perfect squares > there are only two perfect squares in the given range 121=11^2 and 144=12^2 > \(y=11\) and \(x=12\). Sufficient.(As cyclicity of units digit of \(7\) in integer power is \(4\), therefore the units digit of \(7^{23}\) is the same as the units digit of \(7^3\), so 3).
(2) \(x^2y^2=23\) > \((xy)(x+y)=23=prime\) > since both \(x\) and \(y\) are positive integers then: \(xy=1\) and \(x+y=23\) > \(y=11\) and \(x=12\). Sufficient.
Answer: D. Bunuel : Hi, it is not written that x can not be equal to y. so what if x= y= 11 or x=y=12 in that case A will not be sufficient. x = y is not possible since we are told that y^2 < x^2.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 16 Jan 2013
Posts: 102
Location: Bangladesh
GMAT 1: 490 Q41 V18 GMAT 2: 610 Q45 V28
GPA: 2.75

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
12 Jul 2015, 16:28
Bunuel wrote: 4. If \(xyz\neq{0}\) is \((x^{4})*(\sqrt[3]{y})*(z^{2})<0\)? (1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) (2) \(y^3>\frac{1}{z{^4}}\)
\(xyz\neq{0}\) means that neither of unknown is equal to zero. Next, \((x^{4})*(\sqrt[3]{y})*(z^{2})=\frac{\sqrt[3]{y}}{x^4*z^2}\), so the question becomes: is \(\frac{\sqrt[3]{y}}{x^4*z^2}<0\)? Since \(x^4\) and \(z^2\) are positive numbers then the question boils down whether \(\sqrt[3]{y}<0\), which is the same as whether \(y<0\) (recall that odd roots have the same sign as the base of the root, for example: \(\sqrt[3]{125} =5\) and \(\sqrt[3]{64} =4\)).
(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) > as even root from positive number (\(x^2\) in our case) is positive then \(\sqrt[5]{y}>\sqrt[4]{x^2}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.
(2) \(y^3>\frac{1}{z{^4}}\) > the same here as \(\frac{1}{z{^4}}>0\) then \(y^3>\frac{1}{z{^4}}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.
Answer: D. Hello sir, It was not mentioned in the question stem whether x, y and z are integers. In this question, if x, y and z were nonintegers, wouldn't the procedure be different? Would you please explain? Thanks! :D
_________________
Heading towards perfection>>



Current Student
Joined: 20 Mar 2014
Posts: 2689
Concentration: Finance, Strategy
GPA: 3.7
WE: Engineering (Aerospace and Defense)

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
12 Jul 2015, 16:59
1
This post received KUDOS
ranaazad wrote: Bunuel wrote: 4. If \(xyz\neq{0}\) is \((x^{4})*(\sqrt[3]{y})*(z^{2})<0\)? (1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) (2) \(y^3>\frac{1}{z{^4}}\)
\(xyz\neq{0}\) means that neither of unknown is equal to zero. Next, \((x^{4})*(\sqrt[3]{y})*(z^{2})=\frac{\sqrt[3]{y}}{x^4*z^2}\), so the question becomes: is \(\frac{\sqrt[3]{y}}{x^4*z^2}<0\)? Since \(x^4\) and \(z^2\) are positive numbers then the question boils down whether \(\sqrt[3]{y}<0\), which is the same as whether \(y<0\) (recall that odd roots have the same sign as the base of the root, for example: \(\sqrt[3]{125} =5\) and \(\sqrt[3]{64} =4\)).
(1) \(\sqrt[5]{y}>\sqrt[4]{x^2}\) > as even root from positive number (\(x^2\) in our case) is positive then \(\sqrt[5]{y}>\sqrt[4]{x^2}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.
(2) \(y^3>\frac{1}{z{^4}}\) > the same here as \(\frac{1}{z{^4}}>0\) then \(y^3>\frac{1}{z{^4}}>0\), (or which is the same \(y>0\)). Therefore answer to the original question is NO. Sufficient.
Answer: D. Hello sir, It was not mentioned in the question stem whether x, y and z are integers. In this question, if x, y and z were nonintegers, wouldn't the procedure be different? Would you please explain? Thanks! :D This question has a trick in that it will be true for both integers and nonintegers alike: 1. x^2 > 0 no matter x=integer or not. Similarly, \(\sqrt[4]{x^2}\) will be positive for x=integer or noninteger. Try it out. Let x = 1 , \(\sqrt[4]{1^2} = 1 > 0\) and if x= 0.5, \(\sqrt[4]{0.5^2} = 0.707 >0.\) Thus it does not matter whether you take x = integer or a fraction. Coming back to the question, Per statement 1, as mentioned above, \(\sqrt[4]{1^2} = 1 > 0\) > \(\sqrt[5]{y} > 0\) > y >0. Thus the statement \((x^{4})*(\sqrt[3]{y})*(z^{2})<0\) will be false. Thus this statement is sufficient. Per statement 2, z^4 > 0 whether z =1 or z= 0.5 > 1/(z^4) >0 > y^3 >0> y>0 (satisfies for both, y =1 or y = 0.25). Thus the given statement \((x^{4})*(\sqrt[3]{y})*(z^{2})<0\) will be false. Thus this statement is sufficient. As both the given statements are sufficient, the correct answer is D. whenever you are in doubt, always test the given statements/conditions with different values (integers, fractions , etc). This way you will get a better picture.



Manager
Joined: 16 Jan 2013
Posts: 102
Location: Bangladesh
GMAT 1: 490 Q41 V18 GMAT 2: 610 Q45 V28
GPA: 2.75

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
12 Jul 2015, 17:03
Bunuel wrote: 8. What is the value of \(x^2+y^3\)? (1) \(x^6+y^9=0\) (2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\)
(1) \(x^6+y^9=0\) > \((x^2)^3=(y3)^3\) > \(x^2=y^3\) > \(x^2+y^3=0\). Sufficient.
(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\) > \(3^{3x^2}=\frac{3}{3^{3y^2}*3}\) > \(3^{3x^2}*3^{3y^2}=1\) > \(3^{3x^2+3y^2}=1\) > \(3x^2+3y^2=0\) (the power of 3 must be zero in order this equation to hold true) > \(x^2+y^2=0\) the sum of two nonnegative values is zero > both \(x\) and \(y\) must be zero > \(x=y=0\) > \(x^2+y^3=0\). Sufficient.
Answer: D. Hello Bunuel, Nice explanations. I can't figure out why exponents over exponents act different sometimes. When to multiply and when to add them? Here, why isn't (x^2)^3 = x^8 and (y^3)^3 = y^27, please explain? As we know, 3^3^3 = 27. Could you please explicate?
_________________
Heading towards perfection>>



Math Expert
Joined: 02 Sep 2009
Posts: 44423

Re: NEW!!! Tough and tricky exponents and roots questions [#permalink]
Show Tags
13 Jul 2015, 00:56
ranaazad wrote: Bunuel wrote: 8. What is the value of \(x^2+y^3\)? (1) \(x^6+y^9=0\) (2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\)
(1) \(x^6+y^9=0\) > \((x^2)^3=(y3)^3\) > \(x^2=y^3\) > \(x^2+y^3=0\). Sufficient.
(2) \(27^{x^2}=\frac{3}{3^{3y^2+1}}\) > \(3^{3x^2}=\frac{3}{3^{3y^2}*3}\) > \(3^{3x^2}*3^{3y^2}=1\) > \(3^{3x^2+3y^2}=1\) > \(3x^2+3y^2=0\) (the power of 3 must be zero in order this equation to hold true) > \(x^2+y^2=0\) the sum of two nonnegative values is zero > both \(x\) and \(y\) must be zero > \(x=y=0\) > \(x^2+y^3=0\). Sufficient.
Answer: D. Hello Bunuel, Nice explanations. I can't figure out why exponents over exponents act different sometimes. When to multiply and when to add them? Here, why isn't (x^2)^3 = x^8 and (y^3)^3 = y^27, please explain? As we know, 3^3^3 = 27. Could you please explicate? Please read the second post of this topic: newtoughandtrickyexponentsandrootsquestions125967.html#p1027927\((a^m)^n=a^{mn}\) \(a^m^n=a^{(m^n)}\) and not \((a^m)^n\) (if exponentiation is indicated by stacked symbols, the rule is to work from the top down)
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics




Re: NEW!!! Tough and tricky exponents and roots questions
[#permalink]
13 Jul 2015, 00:56



Go to page
Previous
1 2 3 4 5 6
Next
[ 103 posts ]



