It is currently 21 Oct 2017, 01:52

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

# Events & Promotions

###### Events & Promotions in June
Open Detailed Calendar

# Number properties

Author Message
Intern
Joined: 07 Sep 2005
Posts: 33

Kudos [?]: 1 [0], given: 0

### Show Tags

03 Apr 2006, 20:00
This topic is locked. If you want to discuss this question please re-post it in the respective forum.

Hey guys...I was wondering what the best shortcut for this question is...

n= (2*3*5*7*11*13)/(77k)

If n is an integer and then which of the following could be the value of k?
(A) 22
(B) 26
(C) 35
(D) 54
(E) 60

Kudos [?]: 1 [0], given: 0

Manager
Joined: 01 Feb 2006
Posts: 100

Kudos [?]: [0], given: 0

### Show Tags

03 Apr 2006, 20:23
n=(2*3*5*13)/k = 390/k

390mod26 = 0

Kudos [?]: [0], given: 0

Manager
Joined: 21 Mar 2006
Posts: 89

Kudos [?]: 2 [0], given: 0

### Show Tags

03 Apr 2006, 20:24

-cancel out 11 & 7 => n=(2*3*5*13)/k
=> nk=2*3*5*13

A 11*2
B 13*2
C 5*7
D 9*3*2
E 2*2*3*15

Since the question specifically says that n is an integer, the answer choice must contain the prime 13, therefore the answer is B.

Kudos [?]: 2 [0], given: 0

Intern
Joined: 07 Sep 2005
Posts: 33

Kudos [?]: 1 [0], given: 0

### Show Tags

03 Apr 2006, 20:59
Ok...I didn't carry out the last step...it is perfectly clear now..thanks for your help!

Kudos [?]: 1 [0], given: 0

VP
Joined: 29 Dec 2005
Posts: 1338

Kudos [?]: 69 [0], given: 0

### Show Tags

03 Apr 2006, 21:20
trublu wrote:
390mod26 = 0

Kudos [?]: 69 [0], given: 0

GMAT Club Legend
Joined: 07 Jul 2004
Posts: 5034

Kudos [?]: 438 [0], given: 0

Location: Singapore

### Show Tags

04 Apr 2006, 20:24
Do a prime factorization of 77 to get 11 * 7

We're told n is an integer, so k must be cancel out 2,3,5,13 or a combination of any of the 4.

A) 22 - 11*2 --> out
B) 26 - 2*13 --> possible
C) 35 - 7*5 --> out
D) 54 - 3*3*3*2 --> out
E) 60 - 2*5*2*3 --> out

B is the only choice that works.

Kudos [?]: 438 [0], given: 0

Senior Manager
Joined: 24 Jan 2006
Posts: 251

Kudos [?]: 5 [0], given: 0

### Show Tags

04 Apr 2006, 21:14
best short cut

n= (2*3*5*7*11*13)/(77k)

n = (2*3*5*7*11*13)/(7*11*k)

n = (2*3*5*13)/(k)

n = 3*13*5*2/k

22 = 11 * 2
26 = 2 * 13
35 = 7 * 5
54 = 2*3*3*3
60 = 5*2*3*2

26 has all digits

Kudos [?]: 5 [0], given: 0

04 Apr 2006, 21:14
Display posts from previous: Sort by