GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 03 Jul 2020, 22:57 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # P is the product, indicated above, of all the numbers of the form

Author Message
TAGS:

### Hide Tags

Intern  Joined: 19 Dec 2015
Posts: 27
P is the product, indicated above, of all the numbers of the form  [#permalink]

### Show Tags

13
15 00:00

Difficulty:   15% (low)

Question Stats: 76% (01:16) correct 24% (01:52) wrong based on 247 sessions

### HideShow timer Statistics

$$P = (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})...(1-\frac{1}{50})$$

P is the product, indicated above, of all the numbers of the form $$1 - \frac{1}{k}$$ where k is an integer from 2 to 50, inclusive. What is the value of P?

A) $$\frac{1}{100}$$

B) $$\frac{1}{50}$$

C) $$\frac{1}{49}$$

D) $$\frac{49}{50}$$

E) $$\frac{99}{100}$$
Manager  Joined: 13 Apr 2016
Posts: 53
Location: India
GMAT 1: 640 Q50 V27
GPA: 3
WE: Operations (Hospitality and Tourism)
Re: P is the product, indicated above, of all the numbers of the form  [#permalink]

### Show Tags

12
7
[quote="Sallyzodiac"]$$P = (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})...(1-\frac{1}{50})$$

P is the product, indicated above, of all the numbers of the form $$1 - \frac{1}{k}$$ where k is an integer from 2 to 50, inclusive. What is the value of P?

A) 1/100

B) 1/50

C) 1/49

D) 49/50

E) 99/100

Ans B.
File attached
Attachments ans1.jpg [ 280.41 KiB | Viewed 13673 times ]

##### General Discussion
Board of Directors D
Status: QA & VA Forum Moderator
Joined: 11 Jun 2011
Posts: 5010
Location: India
GPA: 3.5
P is the product, indicated above, of all the numbers of the form  [#permalink]

### Show Tags

3
1
Dear Sallyzodiac and Himanshu9818

There is a pattern if you all can analyze -

Sallyzodiac wrote:
$$P = (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})...(1-\frac{1}{50})$$

$$P = (1-\frac{1}{2})$$ = $$\frac{1}{2}$$

$$P = (1-\frac{1}{2})(1-\frac{1}{3})$$ = $$(\frac{1}{3})$$

$$P = (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})$$ = $$(\frac{1}{4})$$

Can you notice a pattern ?

I think by now all of you have understood that it depends on the value of the last denominator...

So, $$P = (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})...(1-\frac{1}{50})$$ = $$(\frac{1}{50})$$

Hence answer will be (B) ,$$(\frac{1}{50})$$  _________________
Thanks and Regards

Abhishek....

PLEASE FOLLOW THE RULES FOR POSTING IN QA AND VA FORUM AND USE SEARCH FUNCTION BEFORE POSTING NEW QUESTIONS

How to use Search Function in GMAT Club | Rules for Posting in QA forum | Writing Mathematical Formulas |Rules for Posting in VA forum | Request Expert's Reply ( VA Forum Only )
Intern  B
Joined: 22 Mar 2017
Posts: 15
Re: P is the product, indicated above, of all the numbers of the form  [#permalink]

### Show Tags

Abhishek009 wrote:
Dear Sallyzodiac and Himanshu9818

There is a pattern if you all can analyze -

Sallyzodiac wrote:
$$P = (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})...(1-\frac{1}{50})$$

$$P = (1-\frac{1}{2})$$ = $$\frac{1}{2}$$

$$P = (1-\frac{1}{2})(1-\frac{1}{3})$$ = $$(\frac{1}{3})$$

$$P = (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})$$ = $$(\frac{1}{4})$$

Can you notice a pattern ?

I think by now all of you have understood that it depends on the value of the last denominator...

So, $$P = (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})...(1-\frac{1}{50})$$ = $$(\frac{1}{50})$$

Hence answer will be (B) ,$$(\frac{1}{50})$$  So does this mean that if k was from 2 to 10 inclusive, the answer would be 1/10? I'm having a hard time following the math on this one.
Target Test Prep Representative G
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2799
Re: P is the product, indicated above, of all the numbers of the form  [#permalink]

### Show Tags

2
1
Sallyzodiac wrote:
$$P = (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})...(1-\frac{1}{50})$$

P is the product, indicated above, of all the numbers of the form $$1 - \frac{1}{k}$$ where k is an integer from 2 to 50, inclusive. What is the value of P?

A) $$\frac{1}{100}$$

B) $$\frac{1}{50}$$

C) $$\frac{1}{49}$$

D) $$\frac{49}{50}$$

E) $$\frac{99}{100}$$

Let’s calculate some values from our set to find a pattern:

1 - ½ = ½

1 - ⅓ = ⅔

1 - ¼ = ¾

1 - ⅕ = ⅘

Multiplying these values together, we have:

(1/2)(2/3)(3/4)(4/5)

Notice that the fractions simplify and we are left with ⅕.

So, we are left with the numerator from the first fraction and the denominator from the last fraction.

For P, since the last fraction in the set is 1 - 1/50 = 49/50, P would equal 1/50.

_________________

# Jeffrey Miller

Jeff@TargetTestPrep.com

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

Senior SC Moderator V
Joined: 22 May 2016
Posts: 3931
P is the product, indicated above, of all the numbers of the form  [#permalink]

### Show Tags

Nathanlambson wrote:
Abhishek009 wrote:
. . .There is a pattern if you all can analyze -

$$P = (1-\frac{1}{2})$$ = $$\frac{1}{2}$$

$$P = (1-\frac{1}{2})(1-\frac{1}{3})$$ = $$(\frac{1}{3})$$

$$P = (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})$$ = $$(\frac{1}{4})$$

Can you notice a pattern ?

[The pattern] depends on the value of the last denominator...

So, $$P = (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})...(1-\frac{1}{50})$$ = $$(\frac{1}{50})$$

Hence answer will be (B), $$(\frac{1}{50})$$

So does this mean that if k was from 2 to 10 inclusive, the answer would be 1/10? I'm having a hard time following the math on this one.

Nathanlambson - yes, if k were 2 to 10 inclusive, the answer would be 1/10.

I had a hard time following the math, too. Perhaps how I rewrote the post might help.

1. From original equation, instead of considering all the factors in parentheses, take them two at a time, and do any arithmetic that is inside parentheses.

$$P = (1-\frac{1}{2})(1-\frac{1}{3})$$ =

$$(\frac{1}{2})(\frac{2}{3})$$ = $$\frac{2}{6}$$ = $$\frac{1}{3}$$

2. Repeat, but put the end product from above as the first of your next two factors

$$(\frac{1}{3})(1-\frac{1}{4})$$ = $$(\frac{1}{3})(\frac{3}{4})$$ = $$\frac{1}{4}$$

And again, two at a time, use end product from previous step as first factor:

$$(\frac{1}{4})(1-\frac{1}{5})$$ = $$(\frac{1}{4})(\frac{4}{5})$$ = $$\frac{1}{5}$$

Abhishek009 wrote "[The product of the preceding factors, at any stage, including the last calculation] depends on the value of the last denominator....

In the last step above, denominator is 5. 1 - (1/5) = 4/5

The pattern also demonstrates that after multiplication by previous term, the numerator is 1, and the product's denominator is 5. $$(\frac{1}{4})(\frac{4}{5})$$ = $$\frac{1}{5}$$.

So the pattern is: the end product of all factors at any point including last term = 1 over whatever denominator the nth term has.

You could calculate k = 2 to 10 inclusive, easily, by multiplying only the first two factors, and by inserting the answer to the arithmetic inside all the parentheses. Thus:

$$(1-\frac{1}{2})(1-\frac{1}{3}) = (\frac{1}{2})(\frac{2}{3})$$ = $$\frac{1}{3}$$ ...

$$\frac{1}{3}$$*$$\frac{3}{4}$$*$$\frac{4}{5}$$ *$$\frac{5}{6}$$*$$\frac{6}{7}$$* $$\frac{7}{8}$$ *$$\frac{8}{9}$$*$$\frac{9}{10}$$ =

Start canceling. You get $$\frac{1}{10}$$

Hope it helps.
_________________
Visit SC Butler, here! Get two SC questions to practice, whose links you can find by date.

Our lives begin to end the day we become silent about things that matter. -- Dr. Martin Luther King, Jr.

BLACK LIVES MATTER.
Intern  Joined: 15 Jun 2017
Posts: 2
Re: P is the product, indicated above, of all the numbers of the form  [#permalink]

### Show Tags

4
1
Another way to look at it is to turn P into a factorial.

(1) $$1 - \frac{1}{2} = \frac{1}{2}$$

(2) $$1 - \frac{1}{3} = \frac{2}{3}$$

(3) $$1 - \frac{1}{4} = \frac{3}{4}$$

(4) $$1 - \frac{1}{5} = \frac{4}{5}$$

$$P=\frac{1}{2} * \frac{2}{3} * \frac{3}{4} * \frac{4}{5} * . . . * \frac{49}{50}$$

∴ $$P=\frac{49!}{50!} = \frac{49!}{50*49!} = \frac{1}{50}$$

Intern  B
Joined: 06 Jul 2016
Posts: 24
Location: Malaysia
Concentration: General Management, Finance
GPA: 4
WE: Corporate Finance (Consumer Products)
Re: P is the product, indicated above, of all the numbers of the form  [#permalink]

### Show Tags

1
P = 1/2 x 2/3 x 3/4 .....49/50

P = 49! / 50!

P = 1/50

Hope that helps.

PS: Bunuel Please tag the question as GMATPrep Exam 5.
Math Expert V
Joined: 02 Sep 2009
Posts: 64939
Re: P is the product, indicated above, of all the numbers of the form  [#permalink]

### Show Tags

AM786 wrote:
P = 1/2 x 2/3 x 3/4 .....49/50

P = 49! / 50!

P = 1/50

Hope that helps.

PS: Bunuel Please tag the question as GMATPrep Exam 5.

___________________________
Tagged as GMAT Prep. Thank you.
_________________ Re: P is the product, indicated above, of all the numbers of the form   [#permalink] 03 Jul 2020, 01:29

# P is the product, indicated above, of all the numbers of the form  