Last visit was: 25 Apr 2024, 16:31 It is currently 25 Apr 2024, 16:31

Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
SORT BY:
Date
Tags:
Show Tags
Hide Tags
avatar
Intern
Intern
Joined: 23 Jun 2010
Posts: 19
Own Kudos [?]: 32 [0]
Given Kudos: 5
Send PM
avatar
Intern
Intern
Joined: 23 Jun 2010
Posts: 19
Own Kudos [?]: 32 [0]
Given Kudos: 5
Send PM
avatar
Intern
Intern
Joined: 23 Jun 2010
Posts: 19
Own Kudos [?]: 32 [0]
Given Kudos: 5
Send PM
avatar
Intern
Intern
Joined: 15 Sep 2010
Posts: 1
Own Kudos [?]: [0]
Given Kudos: 0
Send PM
Re: Math Formula and shortcuts [#permalink]
Thank you very much, it's very useful and nice post.
User avatar
Manager
Manager
Joined: 17 Aug 2009
Posts: 184
Own Kudos [?]: 22 [0]
Given Kudos: 18
Send PM
Re: Math Formula and shortcuts [#permalink]
yasar434 wrote:
Few tricks

1) 0.6666...

to convert 0.6666... to fraction, we know 6 is repeated every time.i.e there is only 1 digit repetition so I will divide 6 by single digit 9

so, i can write it as 6/9

2) 0.46464646...

here 46 is repeated so there are 2 digits

fraction is 46/99

3)0.23434343434...

here we can see that after 0.2 , 34 is repeated
fraction = ( decimal - non repeated decimal)/(9 digits equal to no of repeated decimals * 10^(no of non repeated decimal))

looks complicated, but it is actually not Wink

fraction = (234 - 2)/(99 * 10^1) = 232/990

4)0.1234343434.....

fraction = (1234-12)/(99 * 10^2) = 1222/9900
i guess this method is easy for finding the fraction of a recurring decimal.



Neat stuff...Thanks !
User avatar
Manager
Manager
Joined: 22 Jul 2010
Posts: 101
Own Kudos [?]: 14 [0]
Given Kudos: 13
Concentration: General Management and Entrepreneurship
Schools:Wharton,Insead,LBS,IMD,Kellog,Haas,Duke
Send PM
Re: Math Formula and shortcuts [#permalink]
nice collection......:P
avatar
Intern
Intern
Joined: 28 Apr 2011
Posts: 1
Own Kudos [?]: [0]
Given Kudos: 0
Send PM
Re: Math Formula and shortcuts [#permalink]
For any easy math shortcuts contact me

For example to show one of my methods:

To square a two digit number, say 74

7^2=49
(7*4)2=56
4^2=16

now add the digit other than the ones digit with previous number.

1. 49 cant be added with a previous number.
2. add the 5 of 56 with 49, 49+5=54 then simply attach the ones digit.becomes 546
3. similarly add 1 of 16 with 546 and attach 6.

you get 5476.
this is the square of 74.
i.e. 74^2=5476 :-) :-) :-) :-) :-) :-)
avatar
Intern
Intern
Joined: 08 Jul 2011
Posts: 1
Own Kudos [?]: [0]
Given Kudos: 0
Send PM
Re: Math Formula and shortcuts [#permalink]
Dear Deeptika

I have no objection in you reposting this but kindly acknowledge the source of this valuable information. I had myself compiled these useful results from the multiple CAT preparatory tests and reading sessions I had way back in 2002 and also published in the pagalguy website

thanks
Gaurav
Manager
Manager
Joined: 02 Feb 2012
Posts: 153
Own Kudos [?]: 9 [0]
Given Kudos: 105
Location: United States
GMAT 1: 770 Q49 V47
GPA: 3.08
Send PM
Re: Math Formula and shortcuts [#permalink]
Looks pretty good! I'll be using this resource in the near future for sure.
avatar
Intern
Intern
Joined: 13 Jan 2012
Posts: 29
Own Kudos [?]: 43 [0]
Given Kudos: 0
Send PM
Re: Math Formula and shortcuts [#permalink]
bandit wrote:
(4.1)In any triangle
a=b*CosC + c*CosB
b=c*CosA + a*CosC
c=a*CosB + b*CosA
(4.2)In any triangle
a/SinA = b/SinB =c/SinC=2R , where R is the circumradius
cosC = (a^2 + b^2 - c^2)/2ab
sin2A = 2 sinA * cosA
cos2A = cos^2(A) - sin^2 (A)


Is this relevant to gmat prep? I am yet to see qns on trigonometry in gmat...
Math Expert
Joined: 02 Sep 2009
Posts: 92915
Own Kudos [?]: 619022 [0]
Given Kudos: 81595
Send PM
Re: Math Formula and shortcuts [#permalink]
Expert Reply
fxsunny wrote:
bandit wrote:
(4.1)In any triangle
a=b*CosC + c*CosB
b=c*CosA + a*CosC
c=a*CosB + b*CosA
(4.2)In any triangle
a/SinA = b/SinB =c/SinC=2R , where R is the circumradius
cosC = (a^2 + b^2 - c^2)/2ab
sin2A = 2 sinA * cosA
cos2A = cos^2(A) - sin^2 (A)


Is this relevant to gmat prep? I am yet to see qns on trigonometry in gmat...


Trigonometry is not tested on the GMAT, so every GMAT geometry question can be answered without trigonometry.
avatar
Intern
Intern
Joined: 16 Sep 2013
Posts: 1
Own Kudos [?]: [0]
Given Kudos: 0
Send PM
Re: Math Formula and shortcuts [#permalink]
GMATMadeeasy wrote:
bandit wrote:
Hi, I have compiled some math formulas from various sources. This may help some.
    - Theory of equations
    - Geometry
    - - General Notions and Shortcuts
    - - - Polygons
    - - - Triangles
    - - - Quadrilaterals
    - - Areas
    - Number properties
    - Life-application problems



THEORY OF EQUATIONS:
Shortcuts to getting information about the roots
-----------------------------
(1) If an equation contains all positive co-efficients of any powers of x, then it has no positive roots.[/i]
e.g. \(x^4+3x^2+2x+6=0\) has no positive roots .

(2) If all the even powers of x have same sign coefficients and all the odd powers of x have the opposite sign coefficients, then the equation has no negative roots.
e.g. \(x^2 - x +2 = 0\)

(3) Summarizing DESCARTES rules of signs:
For an equation f(x)=0, the maximum number of positive roots it can have is the number of sign changes in f(x); and the maximum number of negative roots it can have is the number of sign changes in f(-x).

(4)Consider the two equations
ax + by = c
dx + ey = f

Then, If \(\frac{a}{d} = \frac{b}{e} = \frac{c}{f}\), then we have infinite solutions for these equations.
If \(\frac{a}{d} = \frac{b}{e} \neq \frac{c}{f}\) , then we have no solution for these equations.
If \(\frac{a}{d} \neq \frac{b}{e}\) , then we have a unique solutions for these equations.

(5) Complex roots occur in pairs, hence if one of the roots of an equation is 2+3i , another has to be 2-3i and if there are three possible roots of the equation, we can conclude that the last root is real. This real roots could be found out by finding the sum of the roots of the equation and subtracting (2+3i)+(2-3i)=4 from that sum.

(6) If an equation f(x)= 0 has only odd powers of x and all these have the same sign coefficients or if f(x) = 0 has only odd powers of x and all these have the same sign coefficients then the equation has no real roots in each case, except for x=0 in the second case.

(7) Besides Complex roots, even irrational roots occur in pairs. Hence if 2+root(3) is a root, then even 2-root(3) is a root . (All these are very useful in finding number of positive, negative, real, complex etc roots of an equation )

(8) |x| + |y| >= |x+y| (|| stands for absolute value or modulus ) (Useful in solving some inequations)

(9) For a cubic equation \(ax^3+bx^2+cx+d=o\)
sum of the roots = - b/a
sum of the product of the roots taken two at a time = c/a
product of the roots = -d/a

(10) For a biquadratic equation \(ax^4+bx^3+cx^2+dx+e = 0\)
sum of the roots = - b/a
sum of the product of the roots taken three at a time = c/a
sum of the product of the roots taken two at a time = -d/a
product of the roots = e/a


Geometry
General Notions and useful shortcuts:

Polygons:
(1)
Quote:
For any regular polygon, the sum of the interior angles is equal to 360 degrees


(2) If any parallelogram can be inscribed in a circle , it must be a rectangle.
(2.1)Given the coordinates (a,b) (c,d) (e,f) (g,h) of a parallelogram, the coordinates of the meeting point of the diagonals can be found out by solving for [(a+e)/2, (b+f)/2] =[ (c+g)/2, (d+h)/2]

(3) If a trapezium can be inscribed in a circle it must be an isosceles trapezium (i:e oblique sies equal).

(4) For an isosceles trapezium , sum of a pair of opposite sides is equal in length to the sum of the other pair of opposite sides .(i:e AB+CD = AD+BC , taken in order) .

Triangles

(1) In an isosceles triangle , the perpendicular from the vertex to the base or the angular bisector from vertex to base bisects the base.

(2) In any triangle the angular bisector of an angle bisects the base in the ratio of the other two sides.

(3) The ratio of the radii of the circumcircle and incircle of an equilateral triangle is 2:1 .

(4.1)In any triangle
a=b*CosC + c*CosB
b=c*CosA + a*CosC
c=a*CosB + b*CosA
(4.2)In any triangle
a/SinA = b/SinB =c/SinC=2R , where R is the circumradius
cosC = (a^2 + b^2 - c^2)/2ab
sin2A = 2 sinA * cosA
cos2A = cos^2(A) - sin^2 (A)

(5.1)APPOLLONIUS THEOREM:
In a triangle , if AD be the median to the side BC , then
AB^2 + AC^2 = 2(AD^2 + BD^2) or 2(AD^2 + DC^2) .
(5.2) Appolonius theorem could be applied to the 4 triangles formed in a parallelogram.

(6) The coordinates of the centroid of a triangle with vertices (a,b) (c,d) (e,f)
is((a+c+e)/3 , (b+d+f)/3) .

(7) Let a be the side of an equilateral triangle . then if three circles be drawn
inside this triangle touching each other then each's radius = a/(2*(root(3)+1))

(8) Let W be any point inside a rectangle ABCD .
Then WD^2 + WB^2 = WC^2 + WA^2

(9) Some pythagorean triplets:
3,4,5 (3^2=4+5)
5,12,13 (5^2=12+13)
7,24,25 (7^2=24+25)
8,15,17 (8^2 / 2 = 15+17 )
9,40,41 (9^2=40+41)
11,60,61 (11^2=60+61)
12,35,37 (12^2 / 2 = 35+37)
16,63,65 (16^2 /2 = 63+65)
20,21,29(EXCEPTION)

Quadrilateral
(1) For a cyclic quadrilateral , the measure of an external angle is equal to the measure of the
internal opposite angle.

(2) If a quadrilateral circumscribes a circle , the sum of a pair of opposite sides is equal
to the sum of the other pair .

(3) the quadrilateral formed by joining the angular bisectors of another quadrilateral is
always a rectangle.

Areas:

(1)Area of a triangle
1/2*base*altitude = 1/2*a*b*sinC = 1/2*b*c*sinA = 1/2*c*a*sinB = root(s*(s-a)*(s-b)*(s-c))
where s=a+b+c/2
=a*b*c/(4*R) where R is the CIRCUMRADIUS of the triangle = r*s ,where r is the inradius of the
triangle

(2.1) For a cyclic quadrilateral , area = root( (s-a) * (s-b) * (s-c) * (s-d) ) , where s=(a+b+c+d)/2
(2.2) For any quadrilateral whose diagonals intersect at right angles , the area of the quadrilateral is 0.5*d1*d2, where d1,d2 are the lenghts of the diagonals.

(3.1) Area of a regular hexagon : root(3)*3/2*(side)*(side)
(3.2) Area of a hexagon = root(3) * 3 * (side)^2

(4) Area of a parallelogram = base * height

(5) Area of a trapezium = 1/2 * (sum of parallel sids) * height = median * height
where median is the line joining the midpoints of the oblique sides.

Stereometry
(1) for similar cones , ratio of radii = ratio of their bases.
(2) Volume of a pyramid = 1/3 * base area * height


Number properties
(1) Product of any two numbers = Product of their HCF and LCM .
Hence product of two numbers = LCM of the numbers if they are prime to each other .
(2) The HCF and LCM of two nos. are equal when they are equal .
(3) For any 2 numbers a>b
a>AM>GM>HM>b (where AM, GM ,HM stand for arithmetic, geometric , harmonic menasa
respectively)
(4) (GM)^2 = AM * HM
(5) For three positive numbers a, b ,c
(a+b+c) * (1/a+1/b+1/c)>=9
(6) For any positive integer n
2<= (1+1/n)^n <=3
(7) a^2+b^2+c^2 >= ab+bc+ca
If a=b=c , then the equality holds in the above.
(8) a^4+b^4+c^4+d^4 >=4abcd
(9) If a+b+c+d=constant , then the product a^p * b^q * c^r * d^s will be maximum
if a/p = b/q = c/r = d/s
(10) (m+n)! is divisible by m! * n! .
(11.1)If n is even , n(n+1)(n+2) is divisible by 24
(11.2)If n is any integer , n^2 + 4 is not divisible by 4
(12) x^n -a^n = (x-a)(x^(n-1) + x^(n-2) + .......+ a^(n-1) ) ......Very useful for finding
multiples .For example (17-14=3 will be a multiple of 17^3 - 14^3)
(13) when a three digit number is reversed and the difference of these two
numbers is taken , the middle number is always 9 and the sum of the other two
numbers is always 9 .
(14) Let 'x' be certain base in which the representation of a number is 'abcd' , then
the decimal value of this number is a*x^3 + b*x^2 + c*x + d
(15) 2<= (1+1/n)^n <=3
(16) (1+x)^n ~ (1+nx) if x<<<1
(17) |a|+|b| = |a+b| if a*b>=0 else |a|+|b| >= |a+b|

(18) In a GP (Geometric Progression?) the product of any two terms equidistant from a term is always constant .
(19)The sum of an infinite GP = a/(1-r) , where a and r are resp. the first term and common ratio of the GP .

(20)If a1/b1 = a2/b2 = a3/b3 = .............. , then each ratio is equal to
(k1*a1+ k2*a2+k3*a3+..............) / (k1*b1+ k2*b2+k3*b3+..............) , which is also equal to
(a1+a2+a3+............./b1+b2+b3+..........)


Life application problems

Mixture Problems
(10) WINE and WATER formula:
If Q be the volume of a vessel q qty of a mixture of water and wine be removed each time from a mixture n be the number of times this operation be done and A be the final qty of wine in the mixture then , A/Q = (1-q/Q)^n


Some neat shortcuts on Simple/Compound Interest.
Shortcut #1:
-------------
We all know the traditional formula to compute interest...
CI = P*(1+R/100)^N - P
The calculation get very tedious when N>2 (more than 2 years). The method suggested below is elegant way to get CI/Amount after 'N' years. You need to recall the good ol' Pascal's Triange in following way:
Code:
Number of Years (N)
-------------------
1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
. 1 .... .... ... ... 1
Example: P = 1000, R=10 %, and N=3 years. What is CI & Amount?
Step 1: 10% of 1000 = 100, Again 10% of 100 = 10 and 10% of 10 = 1
We did this three times b'cos N=3.
Step 2:
Now Amount after 3 years = 1 * 1000 + 3 * 100 + 3 * 10 + 1 * 1 = Rs.1331/-
The coefficents - 1,3,3,1 are lifted from the pascal's triangle above.
Step 3:
CI after 3 years = 3*100 + 3*10 + 3*1 = Rs.331/- (leaving out first term in step
2)
If N =2, we would have had, Amt = 1 * 1000 + 2 * 100 + 1 * 10 = Rs. 1210/-
CI = 2 * 100 + 1* 10 = Rs. 210/-
This method is extendable for any 'N' and it avoids calculations involving higher
powers on 'N' altogether!
A variant to this short cut can be applied to find depreciating value of some
property. (Example, A property worth 100,000 depreciates by 10% every year, find
its value after 'N' years).
Shortcut #2:
-------------
(i) When interest is calculated as CI, the number of years for the Amount to double (two times the principal) can be found with this following formula:
P * N ~ 72 (approximately equal to).
Exampe, if R=6% p.a. then it takes roughly 12 years for the Principal to double itself.
Note: This is just a approximate formula (when R takes large values, the error % in
formula increases).
(ii) When interest is calculated as SI, number of years for amt to double can be
found as:
N * R = 100 . BTW this formula is exact!
Adding to what 'Peebs' said, this shortcut does work for any P/N/R.
Basically if you look closely at this method, what I had posted is actually derived
from the Binomial expansion of the polynomial -- (1+r/100)^n but in a more
"edible" format digestable by us! BTW herez one shortcut on recurring decimals to fractions ...Its more easier to explain with an example..
Eg: 2.384384384 ....
Step 1: since the 3 digits '384' is recurring part, multiply 2.384 by 1000 = so we
get 2384.
Next '2' is the non recurring part in the recurring decimal so subtract 2 from 2384
= 2382.
If it had been 2.3848484.., we would have had 2384 - 23 = 2361. Had it been
2.384444.. NR would be 2384 - 238 = 2146 and so on.
We now find denominator part .......
Step 3: In step 1 we multiplied 2.384384... by 1000 to get 2384, so put that first.
Step 4: next since all digits of the decimal part of recurring decimal is recurring,
subtract 1 from step 3. Had the recurring decimal been 2.3848484, we need to
subtract 10. If it had been 2.3844444, we needed to have subtracted 100 ..and so
on...
Hence here, DR = 1000 - 1 = 999
Hence fraction of the Recurring decimal is 2382/999!!
Some more examples ....
1.56787878 ... = (15678 - 156) / (10000 - 100) = 15522/9900
23.67898989... = (236789 - 2367) / (10000 - 100) = 234422/9900
124.454545... = (12445 - 124) / (100 - 1) = 12321/99

Clock problems


(4) Problems on clocks can be tackled as assuming two runners going round a circle , one 12 times
as fast as the other .
That is , the minute hand describes 6 degrees /minute the hour hand describes 1/2 degrees /minute .
Thus the minute hand describes 5(1/2) degrees more than the hour hand per minute .
(5) The hour and the minute hand meet each other after every 65(5/11) minutes after being together at midnight.
(This can be derived from the above) .


For any regular polygon, the sum of the interior angles is equal to 360 degrees . It is not correct i beleive.

It is (n-2)180 where n >3 . For e.x. if n =5 (lets say a regular pentagon) , sum is 540 degree.


I think it should be: For any regular polygon of n sides, the sum of exterior angles (not interior) is always 360
avatar
Intern
Intern
Joined: 11 Feb 2017
Posts: 6
Own Kudos [?]: 0 [0]
Given Kudos: 0
Location: India
GMAT 1: 650 Q48 V32
GPA: 4
Send PM
Re: Math Formula and shortcuts [#permalink]
Polygon here is considered only as a quadrilateral?

Sent from my XT1052 using GMAT Club Forum mobile app
Tutor
Joined: 30 Oct 2012
Status:London UK GMAT Consultant / Tutor
Posts: 76
Own Kudos [?]: 151 [0]
Given Kudos: 3
Send PM
Re: Math Formula and shortcuts [#permalink]
Expert Reply
Some of the more GMAT-specific shortcuts are in my guide here:

https://yourgmatcoach.withcoach.com/fre ... -shortcuts

Properties of Numbers concepts and shortcuts here:

https://yourgmatcoach.withcoach.com/fre ... -questions

Fractions shortcuts here:

https://yourgmatcoach.withcoach.com/fre ... gymnastics
avatar
Intern
Intern
Joined: 26 Sep 2018
Posts: 1
Own Kudos [?]: 0 [0]
Given Kudos: 0
Send PM
Re: Math Formula and shortcuts [#permalink]
that is great list of Math Formulas and Shortcuts which is help for all type of student such as class 6-12. i also found the math formula for all class according to Topic wise Byjus and andlearning both are best platform to learn math formula
User avatar
Non-Human User
Joined: 09 Sep 2013
Posts: 32679
Own Kudos [?]: 822 [0]
Given Kudos: 0
Send PM
Re: Math Formula and shortcuts [#permalink]
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
GMAT Club Bot
Re: Math Formula and shortcuts [#permalink]
   1   2 
Moderator:
Math Expert
92915 posts

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne