GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 07 Jul 2020, 19:57 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # Square Root = Always Positive?

Author Message
TAGS:

### Hide Tags

Intern  B
Joined: 07 Jul 2018
Posts: 42
Re: Square Root = Always Positive?  [#permalink]

### Show Tags

Bunuel wrote:
MartinSC wrote:

If (x-1)^2=400, which of the following could be the value of ?
(A) 15
(B) 14
(C) –24
(D) –25
(E) –26

I thought "16" applying the "always positive" mantra, but the explanation goes as follows:

"Work the problem by taking the square root of both sides and solving for x.

Thus,

(x-1)^2=400
x-1= +/-20 (wait, I was not expecting to see the negative root!!)

So x= -19 or x=21 and
x-5=-24 or x-5=16" (which is not even an option).

Seeing that 16 was not among the choices, I could have picked (C)-24, which would have been correct, but it goes against the theory of the positive root...so I was left scratching my head.

Anyone has an idea?

Thks!

When the GMAT provides the square root sign for an even root, such as a square root, fourth root, etc. then the only accepted answer is the positive root. That is:

$$\sqrt{9} = 3$$, NOT +3 or -3;
$$\sqrt{16} = 2$$, NOT +2 or -2;

Notice that in contrast, the equation $$x^2 = 9$$ has TWO solutions, +3 and -3. Because $$x^2 = 9$$ means that $$x =-\sqrt{9}=-3$$ or $$x=\sqrt{9}=3$$.

$$p^2 = (q+1)^2$$

Now according to you, this should give 2 solutions.
But If I square root this, then it should give only 1 solution.

I don't get it, it confuses me even more, what is the answer to this equation? The official answer says it has only 1 solution, Now how is that?
What would this give?
Math Expert V
Joined: 02 Sep 2009
Posts: 65062
Re: Square Root = Always Positive?  [#permalink]

### Show Tags

Akshit03 wrote:
Bunuel wrote:
MartinSC wrote:

If (x-1)^2=400, which of the following could be the value of ?
(A) 15
(B) 14
(C) –24
(D) –25
(E) –26

I thought "16" applying the "always positive" mantra, but the explanation goes as follows:

"Work the problem by taking the square root of both sides and solving for x.

Thus,

(x-1)^2=400
x-1= +/-20 (wait, I was not expecting to see the negative root!!)

So x= -19 or x=21 and
x-5=-24 or x-5=16" (which is not even an option).

Seeing that 16 was not among the choices, I could have picked (C)-24, which would have been correct, but it goes against the theory of the positive root...so I was left scratching my head.

Anyone has an idea?

Thks!

When the GMAT provides the square root sign for an even root, such as a square root, fourth root, etc. then the only accepted answer is the positive root. That is:

$$\sqrt{9} = 3$$, NOT +3 or -3;
$$\sqrt{16} = 2$$, NOT +2 or -2;

Notice that in contrast, the equation $$x^2 = 9$$ has TWO solutions, +3 and -3. Because $$x^2 = 9$$ means that $$x =-\sqrt{9}=-3$$ or $$x=\sqrt{9}=3$$.

$$p^2 = (q+1)^2$$

Now according to you, this should give 2 solutions.
But If I square root this, then it should give only 1 solution.

I don't get it, it confuses me even more, what is the answer to this equation? The official answer says it has only 1 solution, Now how is that?
What would this give?

I think you messed up something there... If it's $$p^2 = (q+1)^2$$, then this equation with TWO unknowns p and q will have infinitely many solutions.

If it'st $$p^2=(p+1)^2$$, then:

$$p^2= p^2+2p+1$$;

$$p=-\frac{1}{2}$$.
_________________
Intern  B
Joined: 07 Jul 2018
Posts: 42
Re: Square Root = Always Positive?  [#permalink]

### Show Tags

Bunuel

I'm sorry for not mentioning that I'm not looking for absolute value.
This was a DS question I was stuck on due to this concept that I still cannot understand.

I only need to know whether p would be (q+1) OR 2 values{(q+1),-(q+1)}
Now taking this into consideration and what I said previously, Can you correct my logic/approach/concept? I have spent 1 hour on this only.
Math Expert V
Joined: 02 Sep 2009
Posts: 65062
Re: Square Root = Always Positive?  [#permalink]

### Show Tags

Akshit03 wrote:
Bunuel

I'm sorry for not mentioning that I'm not looking for absolute value.
This was a DS question I was stuck on due to this concept that I still cannot understand.

I only need to know whether p would be (q+1) OR 2 values{(q+1),-(q+1)}
Now taking this into consideration and what I said previously, Can you correct my logic/approach/concept? I have spent 1 hour on this only.

$$x^2 = positive \ number$$ ALWAYS has TWO solutions: $$x = \sqrt{positive \ number}$$ and $$x = -\sqrt{positive \ number}$$.

For example, x^2 = 9 --> $$x = \sqrt{9}=3$$ or $$x = -\sqrt{9}=-3$$.

$$p^2=(q+1)^2$$ means that $$|p|=|q+1|$$, so p=q+1 or p=-(q+1)

P.S. What DS question are you talking about?
_________________
Intern  B
Joined: 07 Jul 2018
Posts: 42
Re: Square Root = Always Positive?  [#permalink]

### Show Tags

Bunuel wrote:
Akshit03 wrote:
Bunuel

I'm sorry for not mentioning that I'm not looking for absolute value.
This was a DS question I was stuck on due to this concept that I still cannot understand.

I only need to know whether p would be (q+1) OR 2 values{(q+1),-(q+1)}
Now taking this into consideration and what I said previously, Can you correct my logic/approach/concept? I have spent 1 hour on this only.

$$x^2 = positive \ number$$ ALWAYS has TWO solutions: $$x = \sqrt{positive \ number}$$ and $$x = -\sqrt{positive \ number}$$.

For example, x^2 = 9 --> $$x = \sqrt{9}=3$$ or $$x = -\sqrt{9}=-3$$.

$$p^2=(q+1)^2$$ means that $$|p|=|q+1|$$, so p=q+1 or p=-(q+1)

P.S. What DS question are you talking about?

Q: If p and q are positive integers, is the greatest common factor of p and q greater than 1?
1: $$p^2 = pq + p$$
2: $$p^2 = q^2 + 2q + 1$$

So you mean to say, if GMAT gives you square root, we take only positive.
But when it gives square like $$x^2 = 9$$ , we take both values?
Math Expert V
Joined: 02 Sep 2009
Posts: 65062
Re: Square Root = Always Positive?  [#permalink]

### Show Tags

Akshit03 wrote:
Bunuel wrote:
Akshit03 wrote:
Bunuel

I'm sorry for not mentioning that I'm not looking for absolute value.
This was a DS question I was stuck on due to this concept that I still cannot understand.

I only need to know whether p would be (q+1) OR 2 values{(q+1),-(q+1)}
Now taking this into consideration and what I said previously, Can you correct my logic/approach/concept? I have spent 1 hour on this only.

$$x^2 = positive \ number$$ ALWAYS has TWO solutions: $$x = \sqrt{positive \ number}$$ and $$x = -\sqrt{positive \ number}$$.

For example, x^2 = 9 --> $$x = \sqrt{9}=3$$ or $$x = -\sqrt{9}=-3$$.

$$p^2=(q+1)^2$$ means that $$|p|=|q+1|$$, so p=q+1 or p=-(q+1)

P.S. What DS question are you talking about?

Q: If p and q are positive integers, is the greatest common factor of p and q greater than 1?
1: $$p^2 = pq + p$$
2: $$p^2 = q^2 + 2q + 1$$

So you mean to say, if GMAT gives you square root, we take only positive.
But when it gives square like $$x^2 = 9$$ , we take both values?

Notice that in the question we are told that p and q are POSITIVE. So, here from $$p^2=(q+1)^2$$ it follows that $$p=q+1$$ only.

Finally, to answer your question, check the discussion on page 1. For example, this one: https://gmatclub.com/forum/square-root- ... l#p1437877

When the GMAT provides the square root sign for an even root, such as a square root, fourth root, etc. then the only accepted answer is the positive root. That is:

$$\sqrt{9} = 3$$, NOT +3 or -3;
$$\sqrt{16} = 2$$, NOT +2 or -2;

Notice that in contrast, the equation $$x^2 = 9$$ has TWO solutions, +3 and -3. Because $$x^2 = 9$$ means that $$x =-\sqrt{9}=-3$$ or $$x=\sqrt{9}=3$$.
_________________
Non-Human User Joined: 09 Sep 2013
Posts: 15384
Re: Square Root = Always Positive?  [#permalink]

### Show Tags

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________ Re: Square Root = Always Positive?   [#permalink] 02 Apr 2020, 15:14

Go to page   Previous    1   2   [ 27 posts ]

# Square Root = Always Positive?  