It is currently 19 Oct 2017, 09:46

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Starting at M, Bob counts each vertex as he moves a chip clockwise aro

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 41893

Kudos [?]: 128871 [0], given: 12183

Starting at M, Bob counts each vertex as he moves a chip clockwise aro [#permalink]

Show Tags

New post 29 Sep 2017, 04:33
00:00
A
B
C
D
E

Difficulty:

(N/A)

Question Stats:

72% (00:50) correct 28% (01:43) wrong based on 18 sessions

HideShow timer Statistics

Image
Starting at M, Bob counts each vertex as he moves a chip clockwise around the inside of the square shown above. Ann also starts at M, but moves the chip in a counter-clockwise direction around the outside of the square. They count consecutive vertices together in unison 1, 2, 3, 4, 5, 6, etc. , and their positions for the first four counts are indicated above. Where will their chips be when both count 15?

(A) Both at M
(B) Both at K
(C) Bob's at M and Ann's at K
(D) Bob's at L and Ann's at J
(E) Bob's at J and Ann's at L

[Reveal] Spoiler:
Attachment:
2017-09-29_1044_002.png
2017-09-29_1044_002.png [ 5.35 KiB | Viewed 330 times ]
[Reveal] Spoiler: OA

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 128871 [0], given: 12183

Director
Director
avatar
P
Joined: 22 May 2016
Posts: 813

Kudos [?]: 264 [0], given: 551

Starting at M, Bob counts each vertex as he moves a chip clockwise aro [#permalink]

Show Tags

New post 29 Sep 2017, 12:50
Bunuel wrote:
Image
Starting at M, Bob counts each vertex as he moves a chip clockwise around the inside of the square shown above. Ann also starts at M, but moves the chip in a counter-clockwise direction around the outside of the square. They count consecutive vertices together in unison 1, 2, 3, 4, 5, 6, etc. , and their positions for the first four counts are indicated above. Where will their chips be when both count 15?

(A) Both at M
(B) Both at K
(C) Bob's at M and Ann's at K
(D) Bob's at L and Ann's at J
(E) Bob's at J and Ann's at L

[Reveal] Spoiler:
Attachment:
2017-09-29_1044_002.png

I think Answer B, both at K.

Easiest way: Count. Count clockwise, and then counterclockwise. No kidding. Just remember to count "1" at M.

Why do they both land on K at count 15? I can think of four approaches that do not involve trigonometry. Here are two. (Neither seems quick to lay out, but I have tried. Describing patterns can be hard.)

Cyclicity

One approach is cyclicity. Bob and Ann have to land on a vertex. Take the letter from the vertex AND the "count" number from the first time around the square. Use the letter and the count value to list ordinal terms.

Bob's cycle

Letter = nth term = count value

M = \(x_1 = 1\)
J = \(x_2 = 2\)
K = \(x_3 = 3\)
L = \(x_4 = 4\)
M = \(x_5 = 1\)
J = \(x_6 = 2\)

The cycle repeats after 4, i.e., cyclicity is 4.

15/4 = 3 remainder 3. Like units digits' patterns, the 15th term (the 15th count), because it is R3, will have the same value as the third term: \(x_3 = 3 = K\).

This cyclicity is analogous but not identical to that of units digits.

The first time around, the terms have corresponding cardinal and ordinal values: 1 = 1st term, 2 = 2nd term, etc. After that first time around, cardinal values repeat, ordinal values do not, but the ordinal values follow the cardinal numbers' pattern.

Bob and Ann will meet at the 1st, 5th, 9th, and 13th terms. They will also meet at the 3rd, 7th, 11th, and 15th terms. Because they are going different directions, they will not meet on the even numbered terms.

Ann's cycle:

M = \(x_1 = 1\)
L = \(x_2 = 2\)
K = \(x_3 = 3\)
J = \(x_4 = 4\)
M = \(x_5 = 1\)

Identical to Bob's on the cyclicity front. On the 15th count, because 15/4 leaves remainder 3, both land on the vertex of the third term in the cycle. That is K.

Intervals and tick marks

Imagine the vertices as tick marks on a number line, and the sides as intervals.

There is one more tick mark than there are intervals. Here is one time around the perimeter:

Square: |---|---|---|---|
Labels: M---K---J---L---M

The number of intervals from M to M is four. But the number of tick marks from M to M is five. There is one fewer interval than there are tick marks. The interval is the length of a side. The tick?

Each time Bob and Ann hit a vertex, they count. That count, at each vertex, is a tick mark. 15 tick marks will have 14 intervals.

So a count of 15 tick marks means they cover the distance of 14 intervals.

To figure out where covering 14 intervals ends, take the total number of intervals and divide by the number of intervals per cycle around the square.

From the figure above: one cycle around the square is 4 intervals (whose length = square's side).

\(\frac{14}{4}\) = 3 cycles plus remainder 2 intervals.

There are three full cycles of M to M. There are two side lengths left over.

With a square figure of four sides, two side lengths away from an original vertex -- irrespective of direction traveled -- lands you on the diagonally opposite vertex. From M, where they both start, that diagonally opposite vertex is K.

Answer B

Kudos [?]: 264 [0], given: 551

Starting at M, Bob counts each vertex as he moves a chip clockwise aro   [#permalink] 29 Sep 2017, 12:50
Display posts from previous: Sort by

Starting at M, Bob counts each vertex as he moves a chip clockwise aro

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


cron

GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.