Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

The wait is over, GMATBusters is back with Weekly Verbal Quiz. The Quiz will be Live for 48 hrs. 5 SC Questions will be posted on the forum and we will post a reply in this topic with a link to each question, so bookmark and follow this thread.

GMAT Club Presents MBA Spotlight - a dedicated Business School event to bring MBA applicants and World’s Top 20 Business Schools together for a week-long experience of getting to know MBA programs and what it takes to get in. Space is Limited!

Re: Tanya prepared 4 different letters to be sent to 4 different addresses
[#permalink]

Show Tags

15 Sep 2013, 11:23

6

1

We are trying to find the probability of 1R3W.

Probability = number of ways to get 1R3W/number of ways total

number of ways total is 4! = 24. Imagine stuffing envelopes randomly. Stacy can put any of 4 letters into the first envelope, any of the remaining 3 into the next, either of the remaining 2 into the next, and has no choice to make on the last, or 4*3*2*1.

number of ways to get 1R3W : She could fill the first envelope with the right letter (1 way), then put either of the 2 wrong remaining letters in the next (2 ways), then put a wrong letter in the next (1 way). That's 1*2*1*1 = 2.

But since it doesn't have to be the first envelope that has the Right letter, it could be any of the 4 envelopes (i.e. we could have RWWW, WRWW, WWRW, WWWR), the total ways to get 1R3W is 4*2 = 8.

Re: Tanya prepared 4 different letters to be sent to 4 different addresses
[#permalink]

Show Tags

30 Nov 2013, 02:16

1

Wayxi wrote:

You can solve this the traditional way:

Probability that first letter in the right envelope= 1/4 Probability that second letter in wrong envelope = 2/3 Probability that third letter in wrong envelope = 1/2 Probability that forth letter in wrong envelope = 1

1/4 * 2/3 * 1/2 = 1/12

Multiply by 4, representing the four letters in the correct envelope:

1/12 * 4 = 4/12 = 1/3

Dear Wayxi ...why u take probability for second letter as 2/3 ..i do understand 3 but confused about 2 in numerator . Isnt it should be 1/3 ?

Re: Tanya prepared 4 different letters to be sent to 4 different addresses
[#permalink]

Show Tags

30 Nov 2013, 03:19

1

archit wrote:

Wayxi wrote:

You can solve this the traditional way:

Probability that first letter in the right envelope= 1/4 Probability that second letter in wrong envelope = 2/3 Probability that third letter in wrong envelope = 1/2 Probability that forth letter in wrong envelope = 1

1/4 * 2/3 * 1/2 = 1/12

Multiply by 4, representing the four letters in the correct envelope:

1/12 * 4 = 4/12 = 1/3

Dear Wayxi ...why u take probability for second letter as 2/3 ..i do understand 3 but confused about 2 in numerator . Isnt it should be 1/3 ?

When one letter is in right envelope, there are 3 left. The probability that the second letter gets in WRONG is 2/3.
_________________

Re: Tanya prepared 4 different letters to be sent to 4 different addresses
[#permalink]

Show Tags

10 Aug 2014, 22:25

2

1

robertrdzak wrote:

Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address?

A) 1/24 B) 1/8 C) 1/4 D) 1/3 E) 3/8

We can also do this question by derangement method:

1. First choose one of the letters and put it in right envelope: That can be done in -> 4C1= 4 ways.

2. Now we would derange the rest of 3 envelopes in : 3! (1/2! - 1/3!) = 2 ways Finally the number of ways will be = statement 1 x statement 2= 4x2= 8 ways --------------- 3

We have sample space= 4! (number of ways of arranging 4 different letters) = 24 ways ---------------- 4

So the probability will be = statement 3/ statement 4 = 8/24= 1/3 (answer)

P.S. In general the number of ways of derangement of n things D(n)= n! [1/2! -1/3!+1/4!- .....+ (-1)^n/n!]

Re: Tanya prepared 4 different letters to be sent to 4 different addresses
[#permalink]

Show Tags

24 Apr 2017, 17:41

5

Wayxi wrote:

You can solve this the traditional way:

Probability that first letter in the right envelope= 1/4 Probability that second letter in wrong envelope = 2/3 Probability that third letter in wrong envelope = 1/2 Probability that forth letter in wrong envelope = 1

1/4 * 2/3 * 1/2 = 1/12

Multiply by 4, representing the four letters in the correct envelope:

1/12 * 4 = 4/12 = 1/3

For anyone wondering about this solution, it is actually correct only by coincidence. This method will fail when the number of letters increased to 5, and is therefore an incorrect formula.

"There are issues with this calculation. it happens to hit upon the correct value at the end, but that's a total coincidence.

i agree with the first two probabilities: the probability that letter a goes into envelope a is indeed 1/4, and the probability if that happens that the letter b goes into an envelope other than b is 2/3. however, it's downhill from there: if letter b actually went into envelope c, then the probability of letter c not going into envelope c is 1. the probability is only 1/2 (as you've stated) if letter b winds up in envelope d. similarly, the final probability is either 0 or 1, depending on whether the last envelope remaining is envelope d or not. if letter b goes in envelope c and letter c goes in envelope b (fulfilling all of your conditions), then letter d is stuck going into envelope d, making that last probability 0.

so, if you're going to go this route, you're stuck with doing the following: * first 2 steps = same as you have them now * 3rd step = 2 branches of a probability tree, depending on whether envelope c is still available (vs. whether it was used for letter b) * 4th step = 2 branches off EACH of those prior 2 branches, depending on whether envelope d is still available (vs. whether it was used for letter b or c)"

If you would like to read further, see Manhattan Prep's forum post on this question.

Re: Tanya prepared 4 different letters to be sent to 4 different addresses
[#permalink]

Show Tags

31 May 2017, 02:55

2

@

robertrdzak wrote:

Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address?

A) 1/24 B) 1/8 C) 1/4 D) 1/3 E) 3/8

1. Total number of arrangements is 24 2. List out the arrangements partly, if letter 1 is in the first envelope They are 1234, 1243, 1324,1342, 1423, 1432 3. Out of the six above cases, 2 cases satisfy the condition. It will be the same for the other letters in the first envelope 4. So the probability is 8/24 which is 1/3.
_________________

Re: Tanya prepared 4 different letters to be sent to 4 different addresses
[#permalink]

Show Tags

29 Dec 2019, 09:52

Top Contributor

tealeaflin wrote:

Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address?

A. 1/24 B. 1/8 C. 1/4 D. 1/3 E. 3/8

Let's solve this question using counting methods.

So, P(exactly one letter with correct address) = (number of outcomes in which one letter has correct address)/(total number of outcomes)

Let a, b, c and d represent the letters, and let A, B, C and D represent the corresponding addresses. So, let's list the letters in terms of the order in which they are delivered to addresses A, B, C, and D. So, for example, the outcome abcd would represent all letters going to their intended addresses. Likewise, cabd represent letter d going to its intended address, but the other letters not going to their intended addresses.

------------------- total number of outcomes The TOTAL number of outcomes = the number of different ways we can arrange a, b, c, and d

RULE: We can arrange n different objects in n! ways. So, we can arrange the four letters in 4! ways = 24 ways -------------------

number of outcomes in which one letter has correct address Now let's list all possible outcomes in which exactly ONE letter goes to its intended addresses: - acbd - adbc - cbda - dbac Aside: At this point you might recognize that there are two outcomes for each arrangement in which one letter goes to its intended address - dacb - bdca - bcad - cabd There are 8 such outcomes. -------------------

So, P(exactly one letter with correct address) = 8/24 = 1/3

Re: Tanya prepared 4 different letters to be sent to 4 different addresses
[#permalink]

Show Tags

19 Feb 2020, 05:46

GMATGuruNY wrote:

dk94588 wrote:

Hello, this was on GMATprep, and I have had problems with this type of question before, but maybe you could help me solve it.

Tanya prepared 4 different letters to 4 different addresses. For each letter, she prepared one envelope with its correct address. If the 4 letters are to be put into the four envelopes at random, what is the probability that only one letter will be put into the envelope with its correct address?

A) 1/24 B) 1/8 C) 1/4 D) 1/3 E) 3/8

Let's call the envelopes E1, E2, E3 and E4.

P(only E1 gets the correct letter):

P(E1 gets the correct letter) = 1/4 (4 letters total, 1 of them correct) P(E2 gets the wrong letter) = 2/3 (3 letters left, 2 of them wrong) P(E3 gets the wrong letter) = 1/2 (2 letters left, 1 of them wrong) P(E4 gets the wrong letter) = 1/1 (1 letter left, and it must be wrong since we placed the correct letter in either E2 or E3)

Since we need all of these events to happen, we multiply the fractions:

1/4 * 2/3 * 1/2 * 1/1 = 1/12.

Since each envelope has the same probability of getting the correct letter and we have 4 envelopes total, we need to multiply by 4:

Re: Tanya prepared 4 different letters to be sent to 4 different addresses
[#permalink]

Show Tags

19 Feb 2020, 09:42

Assume four letters L1, L2, L3 and L4 are to be send to their corresponding address A1, A2, A3 and A4. Now one letter can be send to it's proper address in. any of four ways namely L1-A1 L2-A2 L3-A3 L4-A4 And three other letters can. be sent to their wrong address in 2×1×1=2 ways Therefore required probability = (4×2)/(4×3×2×1) =1/3 Hence correct answer is option (D).

gmatclubot

Re: Tanya prepared 4 different letters to be sent to 4 different addresses
[#permalink]
19 Feb 2020, 09:42