Bunuel wrote:
The height of an equilateral triangle is the side of a smaller equilateral triangle, as shown above. If the side of the large equilateral triangle is 1, what is AB?
A. 1 - √3/2
B. 0.25
C. 2 - √3
D. 1/3
E. 1 - √3/4
(The formula below we suggest you memorize. It will be used here twice.)
\({h_{eq}} = {{L\sqrt 3 } \over 2}\,\,\,\,\,\left( * \right)\,\,\,\,\,\,\,\,\left( {{\rm{height}}\,\,{\rm{of}}\,\,{\rm{an}}\,\,{\rm{equilateral}}\,\,{\rm{triangle}}\,\,{\rm{with}}\,\,{\rm{side}}\,\,L} \right)\)
\(? = AB = {L_{\,{\rm{large}}}} - {h_{{\rm{eq}}\,{\rm{small}}}}\,\, = \,\,\,1 - \,\,{?_{{\rm{temporary}}}}\)
\(\Delta \,{\rm{small}}\,\,:\,\,\,\,\,{L_{\,{\rm{small}}}} = {h_{\,{\rm{eq}}\,{\rm{large}}}}\,\,\mathop = \limits^{\left( * \right)} \,\,\,\,{{1 \cdot \sqrt 3 } \over 2}\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,\,{?_{{\rm{temporary}}}} = {h_{{\rm{eq}}\,{\rm{small}}}}\,\,\,\mathop = \limits^{\left( * \right)} \,\,\,{{\sqrt 3 } \over 2} \cdot {{\sqrt 3 } \over 2} = {3 \over 4}\)
\(? = 1 - {3 \over 4} = {1 \over 4}\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.
_________________
Fabio Skilnik ::
GMATH method creator (Math for the GMAT)
Our high-level "quant" preparation starts here:
https://gmath.net